Advertisement

World Journal of Surgery

, Volume 7, Issue 6, pp 700–709 | Cite as

Phototherapy of tumors

  • S. G. Bown
Progress Symposium—The Use of Lasers in Current Surgical Practice

Abstract

Lasers provide a means of delivering high intensity light to small well-defined areas under precise control. The biological response depends on the light wavelength and intensity and the absorption characteristics of the target organ. The most important effects are thermal and include tissue vaporization, necrosis with later sloughing, and necrosis stimulating an inflammatory response which may lead to local fibrosis. The Carbon Dioxide Laser can cut or vaporize neoplastic tissue in areas accessible to rigid endoscopy, but the more penetrating Nd YAG and Argon laser beams can be transmitted via flexible fibers and have greater potential for destroying larger tumors without unacceptable damage to surrounding areas. More selective tumor phototherapy is possible in some organs by sensitization with HpD (hematoporphyrin derivative) and subsequent treatment with a dye laser. This effect is non-thermal and depends on the production of singlet oxygen by activated HpD. The precision possible for local treatment of solid tumors with lasers is greater than for almost any other techniques, but careful quantitative studies are needed to establish the appropriate treatment parameters in any particular situation.

Keywords

High Intensity Light Hematoporphyrin Carbon Dioxide Laser Rigid Endoscopy Selective Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

C'est seulement en 1960, 3 ans après la première publication concernant l'action du laser que les communications à propos de son emploi pour traiter les tumeurs apparurent. McGuff et ses collaborateurs rapportèrent d'abord la guérison par photothérapie (laser Rubis) de mélanomes transplantés sur la joue des hamsters. Minton et ses collaborateurs publièrent ensuite des cas de destruction de mélanomes et de sarcomes transplantés chez la souris par le laser Néodymium et démontrèrent que la destruction du processus tumoral était plus complète quand les lasers à hautes énergies étaient employés. Les premiers essais cliniques parurent prometteurs, puis après une période d'enthousiasme un certain scepticisme se fit jour. Ce phénomène était dû d'une part à la difficulté d'employer des lasers adequats, d'autre part à la difficulté d'atteindre par le rayonnement les parties du corps à traiter. L'amélioration ultérieure de l'appareillage devait entraîner le développement de la photothérapie tumorale. Les nouveaux lasers en effet grâce à leur souplesse permettent de transmettre un rayonnement intense et étroit à la zone à atteindre (grâce aux fibres en quartz, aux fibres en verre flexible) ou aux appareils articulés qui s'opposent aux appareils anciens rigides.

Cet article a pour but de définir les interactions entre le rayonnement des lasers et les différents systèmes biologiques ainsi que de discuter les indications de la photothérapie tumorale par rapport aux autres méthodes de traitement des tumeurs.

Resumen

El efecto biológico de la energía del laser depende de la intensidad de la luz, de las características de absorción de los tejidos, de la longitud de la onda y de la respuesta biológica a la energía absorbida. Los tejidos neoplásicos y los traumatizados poseen afinidad por las porfirinas. La captación selectiva por parte de los tejidos malignos puede ser incrementada mediante la utilización de un derivado de la hematoporfirina conocido como el derivado hematoporfirínico (HpD). El mecanismo del efecto citotóxico se basa en la activación del HpD por el haz de laser; el HpD activado convierte el oxígeno, cuyos electrones en su último orbital se encuentran en forma de tripleta, para convertirlos en oxígeno en donde, en sus últimos orbitales se encuentran sueltos o en forma de singleta. El oxiǵeno en forma de singleta es citotóxico para la membrana celular. El efecto es de tipo local, porque el oxígeno en forma de singleta posee una vida media corta y no puede moverse por más de una distancia correspondiente a unos pocos diámetros celulares a partir del lugar de su producción. El potencial de destrucción es máximo en los neoplasmas que tienen elevada afinidad por el HpD, en contraste con los tejidos normales de alrededor. Los estudios experimentales utilizando esta tecnología han demostrado un futuro promisorio, y esta modalidad terapéutica está siendo evaluada clínicamente.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McGuff, P.E., Bushnell, D., Soroff, H.S., Deterling, R.A.: Studies of the surgical applications of lasers. Surg. Forum14:143, 1963Google Scholar
  2. 2.
    Minton, J.P., Ketcham, A.S., Dearman, J.R., McKnight, W.B.: The effect of neodymium laser radiation on two experimental malignant tumour systems. Surg. Gynecol. Obstet.120:481, 1965Google Scholar
  3. 3.
    Goldman, L., Wilson, R.G.: Treatment of basal cell epithelioma by laser radiation. J.A.M.A.169:773, 1964Google Scholar
  4. 4.
    Mester, E., Cryenes, C., Tota, J.G.: Experimentelle Untersuchungen über die Wirkung von Laserstrahlen auf die Wunheilung. Z. Exper. Chir.2:94, 1969Google Scholar
  5. 5.
    Mester, E., Spiry, T., Szende, B., Tota, J.G.: Effect of laser rays on wound healing. Am. J. Surg.122:532, 1971Google Scholar
  6. 6.
    Mester, E., Toth, N., Mester, A.: The biostimulative effect of laserbeam. Laser Tokyo 1981, Section 22, pp. 4–7Google Scholar
  7. 7.
    Gardner, W.N., Hugh-Jones, P., Carroll, M.A., Hewitt, E.R., Hewitt, H.B., Whimster, W.: Quantitative analysis of effect of neodymium-YAG laser on transplanted mouse carcinomas. Thorax37:594, 1982Google Scholar
  8. 8.
    Bown, S.G., Salmon, P.R., Storey, D.W., Calder, B.M., Kelly, D.F., Adams, N., Pearson, H., Weaver, B.M.O.: Nd YAG laser photocoagulation in the dog stomach. Gut21:818, 1980Google Scholar
  9. 9.
    Kelly, D.F., Bown, S.G., Salmon, P.R., Calder, B.M., Pearson, H., Weaver, B.M.O.: Nature and extent of histological changes induced by argon laser photocoagulation in canine gastric mucosa. Gut21:1047, 1980Google Scholar
  10. 10.
    Goldman, L., editor: The Biomedical Laser. Berlin-Heidelberg-New York, Springer-Verlag, 1981Google Scholar
  11. 11.
    Bown, S.G., Swain, C.P., Edwards, D.A.W., Salmon, P.R.: Palliative relief of malignant upper gastrointestinal obstruction by endoscopic laser therapy. Gut23:A918, 1982Google Scholar
  12. 12.
    Fleischer, D., Kessler, F., Haye, D.: Endoscopic Nd YAG laser therapy for carcinoma of the esophagus: A new palliative approach. Am. J. Surg.143:280, 1982Google Scholar
  13. 13.
    Dixon, J.A., Burt, R.W., Rotemy, R.H., McClosky, D.W.: Endoscopie Argon laser photocoagulation of small sessile colonie polyps. Gastrointest. Endos.28:162, 1982Google Scholar
  14. 14.
    Spinelli, P., Pizzetti, P., Mirabile, V. et al.: Nd YAG laser treatment of the rectal remnant after colectomy for familiar polyposis. Laser Tokyo 1981, Section 23, pp. 49–50Google Scholar
  15. 15.
    Ichikana, T., Nakazawa, S., Ema, Y.: Effects of laser endoscopy on gastric tumours with special reference to correlation with histological types of tumours. Scand. J. Gastroenterol.17 [Suppl. 78]:129, 1982Google Scholar
  16. 16.
    Kasugai, T., Sugiura, H., Itoh, Y. et al.: Endoscopic laser treatment for mucosal tumours of the gastrointestinal tract. Scand. J. Gastroenterol.17 [Suppl. 78]:192, 1982Google Scholar
  17. 17.
    Figge, F.H.J., Weiland, G.S.: Studies on cancer detection and therapy: The affinity of neoplastic embryonic and traumatized tissue for porphyrins and metalloporphyrins. Cancer Res.9:549, 1949Google Scholar
  18. 18.
    Gregorie, H.B., Jr., Edgar, O.H., Ward, J.L., Green, J.F., Richards, T., Robertson, H.C., Jr., Stevenson, T.B.: Hematoporphyrin-derivative fluorescence in malignant neoplasms. Ann. Surg.167:820, 1968Google Scholar
  19. 19.
    Berenbaum, M.C., Bonnett, R., Scourides, P.A.: In vivo activity of components of haematoporphyrin derivative. Br. J. Cancer45:571, 1982Google Scholar
  20. 20.
    Weishaupt, K.R., Gomer, C.J., Dougherty, T.J.: Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res.36:2326, 1976Google Scholar
  21. 21.
    Dougherty, T.J., Gomer, C.J., Weishaupt, K.R.: Energetics and efficiency of photoinactivation of murine tumor cells containing hematoporphyrin. Cancer Res.36:2330, 1976Google Scholar
  22. 22.
    Gomer, C.J., Dougherty, T.J.: Determination of [3H]- and [14C] hematoporphyrin derivative distribution in malignant and normal tissue. Cancer Res.39:146, 1979Google Scholar
  23. 23.
    Jori, G., Pizzl, G. Reddi, E., Tomio, L., Salvato, B., Zorat, P., Calzavara, F.: Time dependence of hematoporphyrin distribution in selected tissues of normal rats and in ascites hepatoma. Tumori65:425, 1979Google Scholar
  24. 24.
    Cortese, D.A., Kinsey, J.H.: Endoscopic management of lung cancer with hematophorphyrin derivative phototherapy. Mayo Clin. Proc.57:543, 1982Google Scholar
  25. 25.
    Hayata, Y., Kato, H., Konaka, C., Ono, J., Takizawa, N.: Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest81:269, 1982Google Scholar
  26. 26.
    Dougherty, T.J., Kaufman, J.E., Goldfarb, A., Weishaupt, K.R., Boyle, D., Mittleman, A.: Photoradiation therapy for the treatment of malignant tumors. Cancer Res.38:2628, 1978Google Scholar
  27. 27.
    Forbes, I.J., Cowled, P.A., Leong, A.S.Y., Ward, A.D., Black, R.B., Blake, A.J., Jacka, F.J.: Phototherapy of human tumors using hematoporphyrin derivative. Med. J. Aust.2:489, 1980Google Scholar
  28. 28.
    Proceedings of the Workshop on Porphyrin Sensitization, September, 1981, Washington, D.C. New York, Plenum Press, 1983Google Scholar
  29. 29.
    British Journal of Cancer45 [Suppl. 5], 1982Google Scholar
  30. 30.
    Bleehen, N.M.: Hyperthermia in the treatment of Cancer. Br. J. Cancer45 [Suppl. 5]:96, 1982Google Scholar
  31. 31.
    Cheung, A.Y.: Microwave and radiofrequency techniques for clinical hyperthermia. Br. J. Cancer45 [Suppl. 5]: 16, 1982Google Scholar
  32. 32.
    Hill, C.R.: Ultrasound biophysics: A perspective. Br. J. Cancer45 [Suppl. 5]:46, 1982Google Scholar

Copyright information

© Société Internationale de Chirurgie 1983

Authors and Affiliations

  • S. G. Bown
    • 1
  1. 1.University College HospitalLondon WC1UK

Personalised recommendations