Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Islet immuno-isolation: The use of hybrid artificial organs to prevent islet tissue rejection

Abstract

Immuno-isolation protects islet tissue from rejection by enclosing it within semi-permeable membranes. Four major techniques have been developed to achieve this goal: (1) Extravascular diffusion chambers. These can be implanted in many locations but are limited by host fibroblastic responses which further reduce diffusion capability. (2) Intravascular diffusion chambers. These have improved diffusion characteristics dependent on design but have serious vascular access problems. (3) Intravascular ultrafiltration chambers. These have a more rapid response since they do not rely on diffusion but have an additional problem of protein deposition on their membranes. (4) Microencapsulation. This technique incorporates the islet tissue inside a biochemical membrane making it more efficient. Yet the technique is limited by membrane instability. Immuno-isolation offers an alternative to immunosuppression, but the biotechnology must be improved to develop suitable materials for effective clinical trials.

Résumé

L'isolement immunitaire consiste à protéger les îlots contre le phénomène de rejet en les enfermant à l'intérieur de membranes semi-perméables. Quatre méthodes principales ont été élaborées à cette fin: 1. Les chambres de diffusion extravasculaires. Elles peuvent être implantées en plusieurs endroits mais leur efficacité est contrecarrée par les réactions fibroblastiques de l'hôte, qui en outre réduisent la capacité de diffusion. 2. Les chambres de diffusion intravasculaires. De par leur conception, elles ont de meilleures caractéristiques de diffusion mais posent de difficiles problèmes d'accès vasculaire. 3. Les chambres d'ultrafiltration intravasculaires. Elles ont une cinétique de réponse plus rapide puisqu' elles ne dépendent pas de la diffusion, mais posent un problème supplémentaire de dépôts protéiques sur leurs membranes. 4. La micro-encapsulation. Dans cette technique, le tissu insulaire est directement enveloppé par une membrane synthétique, améliorant l'efficacité des îlots. Mais l'instabilité de ces membranes compromet les résultats de cette technique. L'isolement immunitaire fournit une alternative à l'immunosuppression, mais des progrès de la biotechnologie sont encore nécessaires pour mettre au point des matériaux adéquats pour des essais thérapeutiques fructueux.

Resumen

El inmunoaislamiento proteje el tejido de islotes del rechazo encerrándolo en membranas semipermeables. Cuatro técnicas para obtener este objetivo han sido desarrolladas. 1. Cámaras extra vascular de difusión. Estas son implantables en varios sitios pero su eficacia está limitada por la respuesta fibroblástica del huesped, la cual reduce su capacidad difusora. 2. Cámaras intravascular de difusión. Estas tienen mejores características de difusión dependiendo del diseño pero están limitados por problemas de acceso vascular. 3. Cámaras intravascular de ultrafiltración. Estas poseen una respuesta mas rápida, ya que no dependen de la difusión, pero tienen el problema asociado a depósitos proteináceos en sus membranas. 4. Microencapsulación. Esta incorpora el tejido de islotes en membranas bioquímicas lo cual las hace más eficientes. La limitación principal de este método es la inestabilidad de las membranas. Aunque el aislamiento inmunológico ofrece otra alternativa a la inmunosupresión, la tecnología biológica actual requiere más refinamiento en el desarrollo de materiales que potencialmente tengan utilidad en ensayos clínicos.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Scharp, D.W., Mason, N.S., Sparks, R.E.: The Use of Hybrid Artificial Organs to Provide Immuno-Isolation to Endocrine Grafts in Transplantation, Shimon Slavin, editor. Israel (in press).

  2. 2.

    Bisceglie, V.V.: Über die antineoplastiche Immunität. E. Krebsforsch40:141, 1933

  3. 3.

    Algire, G.H., Legallais, F.Y.: Recent developments in the transparent chamber technique as adapted to the mouse. J. Natl. Cancer Inst.10:225, 1949

  4. 4.

    Algire, G.H., Weaver, J.M., Prehn, R.T.: Growth of cellsin vivo in diffusion chambers. I. Survival of homografts in immunized mice. J. Natl. Cancer Inst.15:493, 1954

  5. 5.

    Prehn, R.T., Weaver, J.M., Algire, G.H.: The diffusion-chamber technique applied to a study of the nature of homograft resistance. J. Natl. Cancer Inst.15:509, 1954

  6. 6.

    Weaver, J.M., Algire, G.H., Prehn, R.T.: The growth of cellsin vivo in diffusion chambers. II. The role of cells in the destruction of homografts in mice. J. Natl. Cancer Inst.15:1737, 1955

  7. 7.

    Algire, G.H.: Diffusion-chamber techniques for studies on cellular immunity. Ann. N.Y. Acad. Sci.69:663, 1957

  8. 8.

    Merwin, R.M., Hill, E.L.: Fate of vascularized and nonvascularized subcutaneous homografts in mice. J. Natl. Cancer Inst.14:819, 1954

  9. 9.

    Moskalewski, S.: Isolation and culture of the islets of Langerhans of the guinea pig. Gen. Comp. Endocr.5:342, 1965

  10. 10.

    Theodorou, N.A., Howell, S.L.: An assessment of diffusion chambers for use in pancreatic islet transplantation. Transplantation27:350, 1979

  11. 11.

    Helmke, K., Freiltog, F., Schneider, R., Laube, H., Badenhop, T., Federlin, K.: Islet cell transplantation in diabetic rats using diffusion chambers. In IsletPancreas-Transplantation and Artificial Pancreas, K. Federlin, E. Pfeiffer, S. Raptis, editors. New York, Thieme-Stratton, 1982, pp. 45–48

  12. 12.

    Strautz, R.L.: Studies of hereditary-obese mice (Ob/Ob) after implantation of pancreatic islets in Millipore filter capsules. Diabetologia6:306, 1970

  13. 13.

    Gates, R.J., Lazarus, N.R.: Reversal of streptozotocin-induced diabetes by intraperitoneal implantation of encapsulated neonatal rabbit pancreatic tissue. Lancet1:971, 1977

  14. 14.

    Weber, C., Weil, R., McIntosh, R., Hogly, H., Warden, G., Reemtsma, K.: Xenotransplantation of porcine islets into hyperglycemic rats. Surgery77:208, 1975

  15. 15.

    Reemtsma, K.: Experimental islet cell grafting: A transplantation model. Transplant. Proc.2:513, 1970

  16. 16.

    Valente, V., Feno, M., Campisi, C., Parodi, F., Tosatti, E.: Allogeneic pancreatic islet transplantation by means of artificial membrane chambers in 13 diabetic patients. Transplant. Proc.12:223, 1980

  17. 17.

    Klomp, G.F., Hashiguchi, H., Dobelle, W.H., Ronel, S., D'Andrea, M.: Hybrid artificial pancreas with hydrogel membranes. Artif. Organs5A:38, 1981

  18. 18.

    Swenne, I., Reibruing, L., Petersson, B., Andersson, A.: Growth of pancreatic islets of normal mice after transplantation into obese hyperglycemic littermates. Acta Endocrinol [Suppl.]227:70, 1979

  19. 19.

    Helmke, K., Slijepcevic, M., Federlin, K.: Wirkung einer transplantation isolierter homologer Langerhans scher inseln auf der experimentellen diabetes der ratte kongr. D. Diab. Munchen8:35, 1973

  20. 20.

    Garvey, J.F.W., Morris, P.J., Finch, D.R.A.: Experimental pancreas transplantation. Lancet1:971, 1979

  21. 21.

    Theodorou, N.A., Vrbova, H., Tyhurst, M., Howell, S.L.: Problems in the use of polycarbonate diffusion chambers for syngeneic pancreatic islet transplantation in rats. Diabetologia18:313, 1980

  22. 22.

    Buschard, K.: Cultivation of islets of Langerhans in Millipore chamber in vivo. Horm. Metab. Res.7:441, 1975

  23. 23.

    Andersson, A.: Survival of pancreatic islet allografts. Lancet2:585, 1979

  24. 24.

    Jolley, W.B., Hinshaw, D.B., Call, T.W., Alverel, L.S.: Xenogeneic pancreatic islet transplantation in proteolytic enzyme bonded diffusion chambers in diabetic rats. Transplant. Proc.9:363, 1977

  25. 25.

    Chen, Y., Mason, N.S., Scharp, D.W., Ballinger, W.F., Sparks, R.E.: Collagenase immobilized on Millipore membranes. Symposium on Morphology, Structure and Interaction on Biomaterials. In Advances in Chemistry Series, no. 199, S.L. Cooper, N.A. Peppas, editors. American Chemical Society, 1982, pp. 483–491

  26. 26.

    Archer, J., Kaye, R., Mutter, G.: Control of streptozotocin diabetes in Chinese hamsters by cultured mouse islet cells without immunosuppression. J. Surg. Res.28:77, 1980

  27. 27.

    Altman, J.J., Houlbart, D., Bruzzo, F., Desplanque, N., Manoux, A., Galletti, P.M.: Inplantation of semi-permeable hollow fibers to prevent immune rejection of transplanted pancreatic islets. In Islet-Pancreas-Transplantation and Artificial Pancreas, K. Federlin, E. Pfeiffer, S. Raptio, editors. New York, Thieme-Stratton, 1982, pp. 43–44

  28. 28.

    Altman, J.J., Manoux, A., Callard, P., Houlbart, D., Desplanque, N., Bruzzo, F., Galletti, P.M.: Successful pancreatic xenografts using semipermeable membrane. Artif. Organs5A:1, 1981

  29. 29.

    Knazek, R.A., Gullino, P.M., Kohler, P.O., Dedrick, R.L.: Cell culture on artificial capillaries: An approach to tissue growth in vitro. Science178:65, 1972

  30. 30.

    Chick, W.L., Like, A.A., Lauris, V.: Beta cell culture on synthetic capillaries: An artificial endocrine pancreas. Science187:847, 1975

  31. 31.

    Chick, W.L., Perna, J.J., Louis, W., Law, D., Galletti, P.M., Panol, G., Whittemore, A.B., Like, A.A., Colton, C.K., Lysaght, M.J.: Artificial pancreas using live beta cells. Effects on glucose homeostasis in diabetic rats. Science197:780, 1977

  32. 32.

    Tze, W.J., Wong, F.C., Chen, I.M., O'Young, S.: Implantable artificial endocrine pancreas unit used to restore normoglycemic in the diabetic rat. Nature264:466, 1976

  33. 33.

    Sun, A.M., Parisius, W., Healy, G.M., Vacek, L., MacMorine, H.G.: The use in diabetic rats and monkeys of artificial capillary units containing cultured islets of Langerhans. Diabetes26:1136, 1977

  34. 34.

    Orsetti, A., Guy, C., Zouai, N., Deffay, R.: Implantation du distributeur bio-artificiel el'insuline chez le chien utilizant des îlots de langerhans d'especes animales differentes. C.R. Soc. Biol [Paris]172:144, 1978

  35. 35.

    Tze, W.J., Wong, F.C., Chen, L.M.: Implantable artificial capillary unit for pancreatic islet allograft and xenograft. Diabetologia16:247, 1979

  36. 36.

    Tze, W.J., Tai, J., Davis, H.R.: Studies with implantable artificial capillary units containing rat islets on diabetic dogs. Diabetologia19:541, 1980

  37. 37.

    Sun, A., Parisius, W., Macmorine, H., Sefton, M., Stone, R.: An artificial endocrine pancreas containing cultured islets of Langerhans. Artif. Organs4:275, 1980

  38. 38.

    Feldman, S., Dodi, G., Haid, K., Scharp, D.W., Ballinger, W., Lacy, P.: Artificial hybrid pancreas. Surg. Forum28:439, 1977

  39. 39.

    Scharp, D.W., Feldman, S.D., Finley, T., Mason, N.S., Ballinger, W.F., Sparks, R.E.: An intravascular transplantation chamber for immuno-isolation of islets of Langerhans. (in press)

  40. 40.

    Sparks, R.E., Mason, N.S., Finley, T.C., Scharp, D.W.: Development, testing and modelling of an islet transplantation chamber. Trans. A.S.A.I.O.28:229, 1982

  41. 41.

    Sparks, R.E., Mason, N.S., Finley, T.C., Scharp, D.W.: Design testing and modelling of an islet translantation chamber. A.S.A.I.O.J. (in press).

  42. 42.

    Bergen, J.F., Mason, N.S., Scharp, D.W., Sparks, R.E.: Insulin inhibition of islets in transplantation chambers. Artif. Organs5A:67, 1981

  43. 43.

    Reach, G., Poussier, P., Sausse, A., Assas, R., Itoh, M., Gerich, J.E.: Functional evaluation of a bioartificial pancreas using isolated islets perfused with blood ultrafiltrate. Diabetes30:296, 1981

  44. 44.

    Chang, T.M.S.: Biomedical Applications of Immobilized Enzymes and Proteins. New York, Plenum Press, 1977

  45. 45.

    Chang, T.M.S.: Artificial cells: The use of hybrid systems. Artif. Organs4:264, 1980

  46. 46.

    Chibata, I., Tosa, T.: Industrial application of immobilized enzymes and immobilized microbial cells. In Applied Biochemistry and Bioengineering, vol. 1. New York, Academic Press, 1976

  47. 47.

    Chang, T.M.S.: Artificial Cells. Springfield, Ill. Charles C. Thomas, 1972

  48. 48.

    Lim, F., Sun, A.M.: Microencapsulated islets as bioartificial endocrine pancreas. Science210:908, 1980

  49. 49.

    Sun, A.M., O'Shea, G.M., Goosen, M.F.A.: Development and in vivo testing of an artificial endocrine pancreas. In Biocompatible Polymers: Science and Technology, M. Szycher, editor. Westport, Conn., Technomic Publishers, 1983, pp. 883–893

  50. 50.

    Leung, Y.F., O'Shea, G.M., Goosen, M.F.A., Sun, A.M.: Microencapsulation of crystalline insulin or islets of Langerhans: An insulin diffusion study. Artif. Organs7:208, 1983

Download references

Author information

Correspondence to David W. Scharp M.D..

Additional information

Research results presented here for the first time were funded by The Kroc Foundation, NIH AM00318, R01-AM17188, Core Facilities of the Diabetes Research and Training Center of Washington University School of Medicine.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scharp, D.W., Mason, N.S. & Sparks, R.E. Islet immuno-isolation: The use of hybrid artificial organs to prevent islet tissue rejection. World J. Surg. 8, 221–229 (1984). https://doi.org/10.1007/BF01655139

Download citation

Keywords

  • Cual
  • Diffusion Chamber
  • Diffusion Capability
  • Islet Tissue
  • Cette Technique