Communications in Mathematical Physics

, Volume 9, Issue 4, pp 313–326 | Cite as

Conformal tensor discontinuities in general relativity

  • L. C. Shepley
Article

Abstract

The postulate is made that across a given hypersurfaceN the metric and its first derivatives are continuous. This postulate is used to derive conditions which must be satisfied by discontinuities in the Riemann tensor acrossN. These conditions imply that the conformal tensor jump is uniquely determined by the stress-energy tensor discontinuity ifN is non-null (and to within an additive term of type Null ifN is lightlike). Alternatively,\([C^{\alpha \beta } _{\gamma \delta } ]\) and [R] determine\(\left[ {R_{\mu v} - \frac{1}{4}Rg_{\mu v} } \right]\) ifN is non-null. These relationships between the conformal tensor and stress-energy tensor jumps are given explicitly in terms of a three-dimensional complex representation of the antisymmetric tensors. Application of these results to perfect-fluid discontinuities is made:\([C^{\alpha \beta } _{\gamma \delta } ]\) is of type D across a fluid-vacuum boundary and across an internal, non-null shock front.\([C^{\alpha \beta } _{\gamma \delta } ]\) is of type I (non-degenerate) in general across fluid interfaces across which no matter flows, except for special cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O'Brien, S., andJ. L. Synge: Comm. Dublin Inst. Adv. Stud. A9 (1952).Google Scholar
  2. 1a.
    Lichnerowicz, A.: Theories Relativistes de la Gravitation et de l'Electromagnetism. Paris: Masson 1955.Google Scholar
  3. 1b.
    Taub, A. H.: Illinois J. Math.1, 370 (1957).Google Scholar
  4. 2.
    See, for example,Lichnerowicz, A.: Relativistic hydrodynamics and magneto-hydrodynamics. New York: W. A. Benjamin 1967.Google Scholar
  5. 3.
    Cocke, W. J.: J. Math. Phys.7, 1171 (1966).Google Scholar
  6. 4.
    Estabrook, F. B., andH. D. Wahlquist: J. Math. Phys.8, 2302 (1967).Google Scholar
  7. 5.
    Bel, L.: Compt. Rend. Acad. Sci. Paris245, 2482 (1957).Google Scholar
  8. 6.
    An easily accessible reference is:Taub, A. H.: In: Perspectives in geometry and relativity. (Ed. byB. Hoffmann.) p. 360. Indiana Univ. 1966.Google Scholar
  9. 7.
    Schild, A.: In: Lectures in applied mathematics. Relativity theory and astrophysics. Am. Math. Soc.8, 1 (1967). Also seeBel, L., andA. Hamoui: Les Conditions de Raccordement. Preprint.Google Scholar
  10. 8.
    Courant, R., andK. O. Friedrichs: Supersonic flow and shock waves. New York: Interscience 1948.Google Scholar
  11. 9.
    Taub, A. H.: In: Lectures in applied mathematics. Relativity theory and astrophysics. Am. Math. Soc.8, 170 (1967).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • L. C. Shepley
    • 1
  1. 1.University of TexasAustin

Personalised recommendations