Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the existence of a local Hamiltonian in the Galilean invariant Lee Model

Abstract

It is shown that there exists a selfadjoint Hamilton operator in the limit of local coupling for the Galilean invariant Lee Model. We discuss the scattering theory of this Hamilton operator in theV ϑ —N ϑ ϑ sector.

This is a preview of subscription content, log in to check access.

Literature

  1. 1.

    Levy-Leblond, J. M.: Commun. Math. Phys.4, 157 (1967).

  2. 2.

    Bargmann, V.: Ann. Math.59, 1 (1954).

  3. 3.

    Lee, T. P.: Phys. Rev.95, 1329 (1954).

  4. 4.

    Källén, G., andW. Pauli: Dan. Mat. Fys. Medd.30, Nr. 7 (1955).

  5. 5 a.

    Pagnamenta, A.: J. Math. Phys.6, 955 (1965);7, 356 (1966).

  6. 5 b.

    Kenschaft, R. P., andR. D. Amado: J. Math. Phys.5, 1340 (1964).

  7. 5 c.

    Sommerfield, C. M.: J. Math. Phys.6, 1170 (1965).

  8. 5 d.

    Kazes, E.: J. Math. Phys.6, 1772 (1965).

  9. 6 a.

    Maxon, M. S., andR. B. Curtis: Phys. Rev.137, 996 (1965).

  10. 6 b.

    -- University of California preprint UCRL-14820 (1966).

  11. 7 a.

    Goldberger, M. L., andS. B. Treiman: Phys. Rev.113, 1636 (1959).

  12. 7 b.

    De Celles, P., andO. Feldmann: Nucl. Phys.14, 517 (1960).

  13. 7 c.

    Amado, R. D.: Phys. Rev.122, 696 (1961).

  14. 8 a.

    Hamermesh, M.: Ann. Phys.9, 518 (1960).

  15. 8 b.

    Levy-Leblond, J. M.: J. Math. Phys.4, 776 (1963).

  16. 8 c.

    Schrader, R.: Diplomarbeit, Hamburg (1964); unpublished.

  17. 9.

    Kato, T.: Trans. Am. Math. Soc.70, 195 (1951).

  18. 10 a.

    Haag, R.: Phys. Rev.112, 669 (1958).

  19. 10 b.

    Ruelle, D.: Helv. Phys. Acta35, 147 (1962).

  20. 11.

    Faddeev, L. D.: Mathematical aspects of the threebody problem in the quantum scattering theory (Transl. f. russian). Israel program for scientific translations, Jerusalem, 1965.

  21. 12.

    Weinberg, S.: Phys. Rev.133B, 232 (1964).

  22. 13.

    Hille, E., andR. S. Phillips: Functional analysis and semigroups. Providence: Am. Math. Soc. 1957.

  23. 14.

    Dunford, N., andJ. T. Schwartz: Linear operators I., II. New York: Interscience 1963.

  24. 15.

    Vaughn, M. F.: Nuovo Cimento40, 803 (1965).

  25. 16.

    Hunziker, W.: Helv. Phys. Acta39, 451 (1966).

  26. 17.

    Albeverio, S., W. Hunziker, W. Schneider, andR. Schrader: Helv. Phys. Acta40, 745 (1967).

  27. 18.

    Nelson, E.: J. Math. Phys.5, 1190 (1964).

  28. 19.

    Yakubowski, O. A.: Nuclear physics (in Russian)5, 1312 (1967).

  29. 20.

    Levy, M.: Nuovo Cimento13, 115 (1959).

  30. 21.

    Achieser, N. I., andI. M. Glasmann: Theorie der lin. Operatoren im Hilbertraum (Transl. f. russian). Berlin: Akademie Verlag 1965.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schrader, R. On the existence of a local Hamiltonian in the Galilean invariant Lee Model. Commun.Math. Phys. 10, 155–178 (1968). https://doi.org/10.1007/BF01654239

Download citation

Keywords

  • Neural Network
  • Statistical Physic
  • Complex System
  • Nonlinear Dynamics
  • Quantum Computing