Journal of Molecular Evolution

, Volume 2, Issue 2–3, pp 149–166

Photocatalytic synthesis of organic compounds from CO and water: Involvement of surfaces in the formation and stabilization of products

  • Jerry S. Hubbard
  • James P. Hardy
  • Gerald E. Voecks
  • Ellis E. Golub
Article

Summary

14C-Formic acid and other14C-organic compounds are formed on surface materials when mixtures of14CO,12CO2 or N2 and water vapor are irradiated with ultraviolet light (UV) ofλ > 250 nm. The rate of organic formation is roughly proportional to the quantity of substratum irradiated. The available evidence suggests that14CO adsorbed to or in contact with the substratum is excited by the long wavelength UV and reacts with adsorbed H2O or surface hydroxyl groups yielding the organic products. Photodestruction of the14C-organics yields14CO2 and14CO. A steady state is attained when organic products reach a concentration such that the rate of photodestruction is equal to the rate of synthesis. The product accumulation is greater and the photodestruction is slower when N2 is used as diluent gas.

Differences in the rates of synthesis, rates of photodestruction and amounts of product accumulation are observed with different silica and alumina substrata. The substrata with large surface areas are most effective for synthesis while maximum photoprotection of organics is afforded by substrata containing high concentrations of surface hydroxyl groups.

The observation of the synthesis on a variety of substrata using realistic simulations of atmospheres and solar energies strengthens previous proposals that this process may occur on Mars and may have been important on the primitive Earth.

Key words

Abiogenesis Photocatalytic Surface Catalysis Ultraviolet Photosynthesis Chemical Evolution Mars 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, P. H.: Proc. nat. Acad. Sci. (Wash.)55, 1365 (1966).Google Scholar
  2. Adams, J. B.: Science159, 1453 (1968).Google Scholar
  3. Barker, E. S.: Nature (Lond.)238, 447 (1972).Google Scholar
  4. Boehm, H. P.: Adv. Catal.16, 179 (1966).Google Scholar
  5. Brinkmann, R. T.: J. Geophys. Res.74, 5355 (1969).Google Scholar
  6. Calvert, J. G., Pitts, J. N.: Photochemistry. p. 430. NewYork: John Wiley and Sons (1966).Google Scholar
  7. Carlton, N. P., Traub, W. A.: Science177, 988 (1972).Google Scholar
  8. Fanale, F. P., Cannon, W. A.: Nature (Lond.)230, 502 (1971a).Google Scholar
  9. Fanale, F. P., Cannon, W. A.: Earth Planet. Sci. Lett.11, 362 (1971b).Google Scholar
  10. Ford, R. R.: Adv. Catal.21, 51 (1970).Google Scholar
  11. Hanel, R. A., Conrath, B. J., Hovis, W. A., Kunde, V. G., Lowman, P. D., Pearl, J. C., Prabhakara, C., Schlachman, B., Levin, G. V.: Science175, 305 (1972).Google Scholar
  12. Hubbard, J. S., Hardy, J. P., Horowitz, N. H.: Proc. nat. Acad. Sci. (Wash.)68, 574 (1971).Google Scholar
  13. Hulett, H. R.: J. theor. Biol.24, 56 (1969).Google Scholar
  14. Hunt, Logan & Salisbury, Icarus, in press (1973).Google Scholar
  15. Kenyon, D. H., Steinman, G.: Biochemical predestination. NewYork: McGraw-Hill 1969.Google Scholar
  16. Kohn, H. W., Taylor, E. H.: Actes due duexienne congres international de catalyse, p. 1461. Paris: Editions Techniq: 1961.Google Scholar
  17. Liuti, G., Dondes, S., Harteck, P.: J. Chem. Phys.44, 4051 (1966).Google Scholar
  18. Mars, P., Scholten, J. J. F., Zwitering, P.: Adv. Catal.14, 35 (1963).Google Scholar
  19. Masursky, H., Batson, R. M., McCauley, F., Soderblom, L. A., Wildey, R. L., Carr, M. H., Milton, D. J., Wildelms, D. E., Smith, B. A., Kirby, T. B., Robinson, J. C., Leovy, C. B., Briggs, G. A., Duxbury, T. C., Acton, C. H., Murray, B. C., Cutts, J. A., Sharp, R. P., Smith, S., Leighton, R. B., Sagan, C., Veverka, J., Noland, M., Lederberg, J., Levinthal, E., Pollack, J. B., Moore, J. T., Hartmann, W. K., Shipley, E. N., DeVaucouleurs, G., Davies, M. E.: Science175, 294 (1972).Google Scholar
  20. Moesta, H.: Umschau70, 45 (1970).Google Scholar
  21. Nicholls, C. H., Leermakers, P. A.: Adv. Photochem.8, 315 (1971).Google Scholar
  22. Posner, A. M., Quirk, J. P.: Proc. Roy. Soc.278, 35 (1964).Google Scholar
  23. Simonaitis, R., Heicklen, J.: Inter. J. Chem. KineticsIII, 319 (1971).Google Scholar
  24. Thompson, B. A., Harteck, P., Reeves, R. R.: J. Geophys. Res.68, 6431 (1963).Google Scholar
  25. Venugopalan, M., Jones, R. A.: Chemistry of dissociated water vapor and related systems, p. 71. NewYork: Interscience 1968.Google Scholar
  26. Vogel, A. I.: Practical organic chemistry, p. 332. NewYork: John Wiley & Sons 1956.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Jerry S. Hubbard
    • 1
    • 2
  • James P. Hardy
    • 1
  • Gerald E. Voecks
    • 1
  • Ellis E. Golub
    • 2
  1. 1.Bioscience and Planetology Section, Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Biology DivisionCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Martin Marietta Corp.DenverUSA
  4. 4.Department of Oral BiologyUniversity of ConnecticutStorrsUSA

Personalised recommendations