Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Translation invariant states in quantum mechanics

  • 107 Accesses

  • 11 Citations

Abstract

We give a complete description of the states of the C.C.R. algebra for a finite number of degrees of freedom which are invariant with respect to subgroups of the translation group of phase space. We make precise some well-known results of quantum mechanics such as Bloch theorem.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Sirugue, M.: Improper states of canonical communication relation for a finite number of degrees of freedom. Preprint, Marseille (1971)

  2. 2.

    Manuceau, J.: Ann. Inst. Henri PoincaréVIII (2), 139 (1968)

  3. 3.

    Manuceau, J., Sirugue, M., Testard, D., Verbeure, A.: Commun. math. Phys.32, 231–243 (1973)

  4. 4.

    Slawny, J.: On factor representation and theC*-algebra of C.C.R. Preprint, Göttingen (1971)

  5. 5.

    Naimark, M.A.: Normed rings. Groningen: Wolters-Noordhoff Publishing 1970

  6. 6.

    Dixmier, J.: LesC*-algèbres et leurs représentations. Paris: Gauthier-Villars 1969

  7. 7.

    Kittel, C.: Introduction to solid state physics. New York: John Wiley-Sons 1959

  8. 8.

    von Naumann, J.: Math. Ann.104, 570 (1931)

  9. 9.

    Mackey, G.W.: Duke Math. J.16, 313–326 (1949)

  10. 10.

    Slawny, J.: On the regular representation, von Neumann uniqueness theorem and theC*-algebra of canonical commutation and anticommutation relations. Preprint, Tel Aviv (1971)

  11. 11.

    Zak, J.: Phys. Rev.168, 686 (1968)

Download references

Author information

Additional information

Communicated by H. Araki

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beaume, R., Manuceau, J., Pellet, A. et al. Translation invariant states in quantum mechanics. Commun.Math. Phys. 38, 29–45 (1974). https://doi.org/10.1007/BF01651547

Download citation

Keywords

  • Neural Network
  • Statistical Physic
  • Phase Space
  • Complex System
  • Quantum Mechanic