Communications in Mathematical Physics

, Volume 38, Issue 2, pp 119–156 | Cite as

Was the big bang a whimper?

  • G. F. R. Ellis
  • A. R. King
Article

Abstract

In many cases the spatially homogeneous cosmological models of General Relativity begin or end at a “big bang” where the density and temperature of the matter in the universe diverge. However in certain cases the spatially homogeneous development of these universes terminates at a singularity where all physical quantities are well—behaved (a “whimper”) and an associated Cauchy horizon. We examine the existence and nature of these singularities, and the possible fate of matter which crosses the Cauchy horizon in such a universe. The nature of both kinds of singularity is illustrated by simple models based on two-dimensional Minkowski space-time; and the possibility of other types of singularity occuring is considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robertson, H. P.: Rev. Mod. Phys.5, 62 (1933). Weinberg, S.: Gravitation and Cosmology, New York: Wiley 1972. Peebles, P. J. E.: Physical Cosmology, Princeton 1972Google Scholar
  2. 2.
    Ellis, G. F. R.: Relativistic Cosmology. In: Sachs, R. K. (Ed.): General relativity and cosmology, XLVII Enrico Fermi Summer School Proceedings, 104. New York: Academic Press 1971. Ellis, G. F. R.: Relativistic cosmology, In: Schatzmann, E. (Ed.): Proceedings of the 1971 Cargese Summer School. New York: Gordon and Breach 1973Google Scholar
  3. 3.
    Hawking, S. W., Penrose, R.: Proc. Roy. Soc. (London) A314, 529 (1970)Google Scholar
  4. 4.
    Hawking, S. W., Ellis, G. F. R.: The large scale structure of space-time, Cambridge 1973Google Scholar
  5. 5.
    Lifschitz, E. M., Khalatnikov, I. M.: Advan. Phys. (Phil. Mag. Suppl.)12, 185 (1963)Google Scholar
  6. 6.
    Belinskii, V. A., Khalatnikov, I. M., Lifshitz, E. M.: Advan. Phys. (Phil. Mag. Suppl.)19, 523 (1970)Google Scholar
  7. 7.
    Schucking, E.: Relativistic cosmology. In: Witten, L. (Ed.): Gravitation, 438. New York: Wiley 1962. Kantowski, R., Sachs, R. K.: J. Math. Phys.7, 443 (1966)Google Scholar
  8. 8.
    Shepley, L. C.: Proc. Nat. Acad. Sci.52, 1403 (1964)Google Scholar
  9. 9.
    Hawking, S. W., Ellis, G. F. R.: Phys. Lett.17, 246 (1965)Google Scholar
  10. 10.
    Ellis, G. F. R., MacCallum, M. A. H.: Commun. math. Phys.12, 108 (1969); MacCallum, M. A. H.: Commun. math. Phys.20, 57 (1971)Google Scholar
  11. 11.
    King, A. R., Ellis, G. F. R.: Commun. math. Phys.31, 209 (1973)Google Scholar
  12. 12.
    Matzner, R. A., Shepley, L. C., Warren, J. B.: Ann. Phys. (New York)57, 401 (1970)Google Scholar
  13. 13.
    Matzner, R. A.: J. Math. Phys.11, 2432 (1970)Google Scholar
  14. 14.
    Shepley, L. C.: Phys. Lett.28A, 695 (1969)Google Scholar
  15. 15.
    Schmidt, B. G.: J. Gen. Rel. Grav.1, 269 (1971); Commun. math. Phys.29, 49 (1972)Google Scholar
  16. 16.
    Schmidt, B. G., Ellis, G. F. R.: UnpublishedGoogle Scholar
  17. 17.
    Clarke, C. J. S.: Commun. math. Phys.32, 205 (1973)Google Scholar
  18. 18.
    Geroch, R. P.: J. Math. Phys.8, 782 (1967)Google Scholar
  19. 19.
    Farnsworth, D. L.: J. Math. Phys.8, 2315 (1967)Google Scholar
  20. 20.
    Ellis, G. F. R.: J. Math. Phys.8, 1171 (1967)Google Scholar
  21. 21.
    Schmidt, B. G.: Commun. math. Phys.15, 329 (1969)Google Scholar
  22. 22.
    Boyer, R. H.: Proc. Roy. Soc. (Lond.) A311, 245 (1969)Google Scholar
  23. 23.
    Carter, B.: J. Math. Phys.10, 70 (1969)Google Scholar
  24. 24.
    Carter, B.: Domains of stationary communication. Preprint. Cambridge (1972)Google Scholar
  25. 25.
    MacCallum, M. A. H., Taub, A. H.: Commun. math. Phys.25, 173 (1972)Google Scholar
  26. 26.
    Treciokas, R., Ellis, G. F. R.: Commun. math. Phys.23, 1 (1971)Google Scholar
  27. 27.
    Eardley, D., Liang, E., Sachs, R. K.: J. Math. Phys.13, 99 (1972)Google Scholar
  28. 28.
    MacCallum, M. A. H., Ellis, G. F. R.: Commun. math. Phys.19, 31 (1970)Google Scholar
  29. 29.
    Hawking, S. W.: Mon. Not. Roy. Ast. Soc.142, 129 (1969); Collins, C. B., Hawking, S. W.: Mon. Not. Roy. Ast. Soc.162, 307 (1973)Google Scholar
  30. 30.
    Misner, C. W.: Minisuperspace. In: Magic without magic. Wheeler Festschrift (1973).Google Scholar
  31. 30a.
    Ryan, M.: Hamiltonian cosmology. Lecture Notes in Physics13, Berlin-Heidelberg-New York: Springer 1972Google Scholar
  32. 31.
    Stormer, O.: Doctoral thesis, Hamburg University (1971) Osinovsky, M. E.: Preprint, Kiev (1973)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • G. F. R. Ellis
    • 1
    • 2
  • A. R. King
    • 3
  1. 1.Physics DepartmentBoston UniversityBostonUSA
  2. 2.Department of Applied Mathematics and Theoretical PhysicsCambridge UniversityCambridgeUK
  3. 3.Department of Applied Mathematics and Theoretical PhysicsCambridge UniversityCambridgeUK

Personalised recommendations