Advertisement

Journal für Ornithologie

, Volume 138, Issue 4, pp 469–496 | Cite as

Taxonomy and phylogeny of reed warblers (genusAcrocephalus) based on mtDNA sequences and morphology

  • Bernd Leisler
  • Petra Heidrich
  • Karl Schulze-Hagen
  • Michael Wink
Article

Abstract

The mitochondrial cytochrome b gene of the majority ofAcrocephalus species (76 individuals) was amplified by PCR and sequenced directly. Nucleotide sequences (1068 base pairs) were used to reconstruct phylogenetic relationships within the genusAcrocephalus as well as betweenAcrocephalus and other sylviid warblers, particularlyHippolais. Acrocephalus andHippolais share ancestry and cluster in a monophyletic clade.Hippolais appears to represent a polyphyletic assemblage sinceH. icterina figures as the sister taxon toAcrocephalus, whereas “Hippolaispallida andcaligata cluster withinAcrocephalus. The followingAcrocephalus clades could be recognized: (1) Large reed warblers form a clade consisting of a monophyletic Palearctic-Australasian subgroup (arundinaceus, stentoreus brunnescens, orientalis, australis, andvaughani) and a monophyletic Afrotropical subgroup (brevipennis, rufescens, gracilirostris, sechellensis, andnewtoni).A. griseldis holds an isolated position at the base of the large reed warbler clade. Within the small reed warblers, two probably monophyletic clades are apparent: (2) the striped species (withbistrigiceps, melanopogon, paludicola, andschoenobaenus), and (3) the small plain-coloured complex (consisting ofdumetorum, palustris, scirpaceus, s. fuscus, baeticatus, andavicenniae plus the neighbouringagricola-complex withagricola, tangorum, andconcinens). The relationship between these groups cannot be resolved. The molecular data clarify the status of some taxa, the systematic position of which has been controversial. A morphometric analysis (PCA) of 20 external characters confirmed the basic complexes, and unveiled adaptations of general importance among clades. At species level, we found less congruence between molecular and morphological data, which can be interpreted as a consequence of specializing adaptations and convergence. The major complexes established by molecular and morphometric analyses are further supported by distributional, acoustical, and oological affinities. A sound phylogenetic framework of the genus makes it now possible to examine the distribution of ecological and behavioural characters and to differentiate informative or convergent characters.Acrocephalus may be split into four previously recognized genera with the following names:Acrocephalus for the large,Calamodus for the striped,Notiocichla for the small plain, andIduna for the brownish “Hippolais” species.

Keywords

Morphometric Analysis Sister Taxon Monophyletic Clade Reed Warbler Phylogenetic Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Die artenreiche GattungAcrocephalus diente in den letzten 20 Jahren als Modellgruppe für verschiedenste ökologische, verhaltens- und evolutionsbiologische Fragestellungen, wobei sich häufig eine vergleichende Bearbeitung als besonders lohnend erwies. Da alle diese Studien auf der traditionellen Systematik basieren, war es nötig, die Phylogenie der Gattung zu rekonstruieren, um: (1) einen verläßlichen Stammbaum verfügbar zu haben, (2) phylogenetische Korrekturen bei vergleichenden Ansätzen durchführen und (3) konvergente Merkmalsentwicklungen erkennen zu können.

Bei 23Acrocephalus-Arten (in 27 Unterarten) wurde das mitochondrielle Cytochrom b-Gen mittels PCR amplifiziert und sequenziert. Anhand der Unterschiede in den Nukleotidsequenzen (1068 Basenpaare) erstellten wir einen Stammbaum der GattungAcrocephalus und untersuchten die verwandtschaftlichen Beziehungen zu anderen Sylviiden, besondersHippolais. Hippolais erweist sich als eine polyphyletische Gruppe.Hippolais (icterina und andere Arten) ist das Schwestertaxon vonAcrocephalus. “H.” pallida undcaligata gehören in die GattungAcrocephalus (subgenusIduna, Abb. 3, 4). Alle molekularen Stammbäume (Abb. 1–4) unterteilenAcrocephalus in drei monophyletische Hauptgruppen: 1. die großen Arten und die kleinenIduna Arten als wahrscheinliche Schwestergruppe, 2. die gestreiften und 3. die kleinen einfarbigen Arten. Die großen Rohrsänger umfassen eine paläarktisch-australasiatische Untergruppe (mitarundinaceus, stentoreus (brunnescens),orientalis, australis undvaughani) sowie eine afrotropische (mitbrevipennis, rufescens, gracilirostris, sechellensis undnewtoni).A. griseldis nimmt eine isolierte Stellung an der Basis der großen Rohrsänger ein und ist möglicherweise eine ursprüngliche Form. Die gestreiften Arten (mitschoenobaenus, bistrigiceps, melanopogon undpaludicola) bilden ebenso eine geschlossene Abstammungsgemeinschaft wie die kleinen einfarbigen, bei denen sich zwei Gruppen abheben (eine mitdumetorum, palustris, scirpaceus, s. fuscus, baeticatus undavicenniae und eine mitagricola, tangorum undconcinens). Die verwandtschaftlichen Beziehungen zwischen diesen drei Hauptgruppen lassen sich nicht auflösen. Morphologische Untersuchungen von 20 äußeren Merkmalen bestätigen einerseits die nach genetischen Ähnlichkeiten aufgestellten Hauptgruppen, die sich durch unterschiedliche Basisanpassungen auszeichnen (Abb. 6, 7). Auf Artniveau stimmen dagegen die aufgrund morphologischer bzw. genetischer Ähnlichkeiten gebildeten Gruppen weniger gut überein (Abb. 5). Diese Diskrepanz ist auf die spezialisierenden Anpassungen der einzelnen Arten an ihre Habitate und auf Konvergenz zurückzuführen. Die Gliederung der Großgruppen entspricht der traditionellen Systematik. Sie wird auch durch die Verbreitung der Arten und durch bioakustische und oologische Merkmale gestützt. In der Feinsystematik klären die molekularen Ergebnisse die verwandtschaftliche Stellung einiger Taxa, deren Einordnung bisher umstritten war: z. B. bildetA. tangorum mitA. concinens undA. agricola eine Gruppe;A. orientalis scheint näher mitA. stentoreus als mitA. arundinaceus verwandt;A. avicenniae scheint eine eigene Art in derscirpaceus-Gruppe zu sein. In weiteren Studien kann nun die Verteilung phänotypischer Merkmale (z. B. Zeichnungsmuster, Gesangsmerkmale, Nestbauweisen) auf den verschiedenen Niveaus des Stammbaums untersucht und historisch oder adaptiv erklärt werden. Z. B. haben sich dunkle Brauenstreifen und Schwanzstelzen verwandtschaftsunabhängig (konvergent) sowohl bei den gestreiften Rohrsängern als auch in deragricola-Gruppe entwickelt; extrem unterschiedliche Paarungssysteme entstanden bei den gestreiften Rohrsängern usw. Wollte man die GattungAcrocephalus aufteilen, sollteAcrocephalus für die großen Arten,Calamodus für die gestreiften,Notiocichla für die kleinen einfarbigen stehen undIduna für die bräunlichen “Hippolais”-Vertreter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Alström, P., U. Olsson &P. D. Round (1991): The taxonomic status ofAcrocephalus agricola tangorum. Forktail 6: 3–13.Google Scholar
  2. (1994): Bestimmung der kleinen fernöstlichen RohrsängerAcrocephalus. Limicola 8: 121–131.Google Scholar
  3. Ash, J. S., D. J. Pearson, G. Nikolaus &P. R. Colston (1989): The mangrove reed warblers of the Red Sea and Gulf of Aden coasts with description of a new subspecies of the African Reed WarblerAcrocephalus baeticatus. Bull. Brit. Orn. Cl. 109: 36–43.Google Scholar
  4. Avise, J. C. (1994): Molecular markers, Natural history & Evolution. N.Y., London.Google Scholar
  5. W. S. Nelson &C. G. Sibley (1994): DNA sequences support a close phylogenetic relationship between some storks and New World vultures. Proc. Natl. Acad. Sc., USA, 91: 5173–5177.Google Scholar
  6. Beier J., B. Leisler &M. Wink (1997): Ein Drossel- x Teichrohrsänger-HybrideAcrocephalus arundinaceus xA. scirpaceus und der Nachweis seiner Elternschaft. J. Orn. 138: 51–60.Google Scholar
  7. Bell, B. D., M. Borowiec, K. R. McConkey &E. Ranoszek (1997): Settlement, breeding success and song repertoires of monogamous and polygynous sedge warblers (Acrocephalus schoenobaenus). Vogelwarte 39: 87–94.Google Scholar
  8. Bensch, S. (1993): Costs, benefits and strategies for females in a polygynous mating system: a study on the great reed warbler. Thesis, Lund Univ.Google Scholar
  9. Berthold, P., &B. Leisler (1980): Migratory restlessness of the Marsh WarblerAcrocephalus palustris. Naturwiss. 67: 472.Google Scholar
  10. Birt, T. P., V. L. Birt-Friesen, J. M. Green, W. A. Montevecchi &W. S. Davidson (1992): Cytochrome b sequence variation among parrots. Hereditas 117: 67–72.Google Scholar
  11. Bruner, P.L. (1974): Behavior, ecology, and taxonomic status of three southeastern Pacific warblers of the genusAcrocephalus. M. Thes. Hawaii.Google Scholar
  12. Catchpole, C. K. (1978): Interspecific territorialism and competition inAcrocephalus Warblers as revealed by playback experiments in areas of sympatry and allopatry. Anim. Behav. 26: 1072–1080.Google Scholar
  13. (1980): Sexual selection and the evolution of complex songs among European warblers of the genusAcrocephalus. Behav. 74: 149–165.Google Scholar
  14. (1987): Bird song, sexual selection and female choice. Trends Ecol. Evol. 2: 94–97.Google Scholar
  15. (1996): Song and female choice: good genes and big brains? Trends Ecol. Evol. 11: 358–360.Google Scholar
  16. Catchpole, C. K., &B. Leisler (1996): Female aquatic warblers (Acrocephalus paludicola) are attracted by playback of longer and more complicated songs. Behaviour 133: 1153–1164.Google Scholar
  17. Cheng, T. (1987): A synopsis of the avifauna of China. Beijing, Hamburg, Berlin.Google Scholar
  18. Cooper, A., C. Mourer-Chauvire, G. K. Chambers, A. von Haeseler, A. C. Wilson &S. Pääbo (1992): Independent origins of New Zealand moas and kiwis. Proc. Natl. Acad. Sci., USA 89: 8741–8744.Google Scholar
  19. Cramp, S., &D. J. Brooks (1992): Handbook of the birds of Europe and Middle East and North Africa. Vol VI. Oxford.Google Scholar
  20. Crowe, T. M., E. H. Harley, M. B. Jakutowicz, J. Komen &A. A. Crowe (1992): Phylogenetic, taxonomic and biogeographical implications of genetic, morphological, and behavioral variation in francolins (Phasianidae:Francolinus). Auk 109: 24–42.Google Scholar
  21. Desjardins, P., &R. Morais (1990): Sequence and gene organisation of chicken mitochondrial genome: A novel gene order in higher vertebrates. J. Mol. Biol. 212: 599–634.Google Scholar
  22. Diamond, A. W. (1980): Seasonality, population structure and breeding ecology of the Seychelles Brush WarblerAcrocephalus sechellensis. Proc. Pan-Afr. Orn. Congr. 4: 253–266.Google Scholar
  23. Dittami, J., H. Hoi &G. Sageder (1991): Parental investment and territorial/sexual behavior in male and female Reed Warbler: are they mutually exclusive? Ethology 88: 249–255.Google Scholar
  24. Dowsett-Lemaire, F. (1979): The imitative range of the song of the Marsh Warbler, with special reference to imitations of African birds. Ibis 121: 453–468.Google Scholar
  25. (1994): The song of the Seychelles warblerAcrocephalus sechellensis and its African relatives. Ibis 136: 489–491.Google Scholar
  26. &R. J. Dowsett (1987): European and African reed warblers,A. scirpaceus andA. baeticatus: vocal and other evidence for a single species. Bull. Brit. Orn. Cl. 107: 74–85.Google Scholar
  27. Duckworth, J. W. (1992): Effects of mate removal on the behaviour and reproductive success of Reed WarblersAcrocephalus scirpaceus. Ibis 134: 164–170.Google Scholar
  28. Dunning, J. B. (1993): CRC handbook of avian body masses. Boca Raton, Florida.Google Scholar
  29. Dyrcz, A. (1986): Factors affecting facultative polygyny and breeding results in the great reed warbler (Acrocephalus arundinaceus). J. Orn. 127: 447–461.Google Scholar
  30. (1988): Mating systems in European Marsh-nesting Passeriformes. Acta XIX Congr. Intern. Ornithol. Vol. 2. Ottawa 1986: 2613–2623.Google Scholar
  31. Dyrcz, A., M. Borowiec &A. Czapulak (1994): Nestling growth and mating system in fourAcrocephalus species. Vogelwarte 37: 179–182.Google Scholar
  32. Eck, S. (1994): Die geographisch-morphologische Vikarianz der großen palaearktischen Rohrsänger (Aves: Passeriformes: Sylviidae:Acrocephalus [arundinaceus]). Zool. Abh. Staatl. Mus. Tierkde. Dresden 48: 161–168.Google Scholar
  33. Ezaki, Y., &E. Urano (1995): Intraspecific comparison of ecology and mating system of the great reed warblerAcrocephalus arundinaceus: Why different results from different populations? Jap. J. Ornithol. 44: 107–122.Google Scholar
  34. Felsenstein, J. (1993): PHYLIP (Phylogenetic Interference Package Version 3.5.c). Distrib. by the author. Dept. Genet., Univ. Washington, Seattle.Google Scholar
  35. Friesen, V. L., W. A. Montevecchi &W. S. Davidson (1993): Cytochrome b nucleotide sequence variation among the AtlanticAlcidae. Hereditas 119: 245–252.Google Scholar
  36. Fry, C. H., K. Williamson &J. Ferguson-Lees (1974): A new subspecies ofAcrocephalus baeticatus from Lake Chad and a taxonomic reapprisal ofAcrocephalus dumetorum. Ibis 116: 340–346.Google Scholar
  37. Gaucher, P., P. Paillat, C. Chappuis, M. Saint Jalme, F. Lotfikhah &M. Wink (1996): Taxonomy of the houbara bustard,Chlamydotis undulata subspecies considered on the basis of sexual display and genetic divergence. Ibis 138: 273–282.Google Scholar
  38. Haffer, J. (1991): GattungAcrocephalus. In:Glutz von Blotzheim, U. N., &K. M. Bauer, Handbuch der Vögel Mitteleuropas: 208–217. Wiesbaden.Google Scholar
  39. Hall, B. P., &R. E. Moreau (1970): An Atlas of speciation in African Passerinae Birds. London.Google Scholar
  40. Hanke, M., &M. Wink (1994): Direct DNA sequencing of PCR amplified vector inserts following enzymatic degradation of primer and dNTPs. BioTechniques 17: 858–860.Google Scholar
  41. Hartert, E. (1909): Die Vögel der paläarktischen Fauna I. Berlin.Google Scholar
  42. (1924): Über einige neue Vögel aus dem indo-australischen Archipel und deren Verwandte. Treubia VI (1): 20–25.Google Scholar
  43. Hasselquist, D. (1994): Male attractiveness, mating tactics and realized fitness in the polygynous great reed warbler. Thesis, Lund Univ.Google Scholar
  44. S. Bensch &T. v. Schanz (1996): Correlation between male song repertoire, extra-pair paternity and offspring survival in the great reed warbler. Nature 381: 229–232.Google Scholar
  45. Hazevoet, C. J. (1989): Ecology and behaviour of Cape Verde Cane Warbler. Abstr. Papers & posters. 5th symposium Fauna and Flora of the Cape Verde Islands. Leiden, 11.Google Scholar
  46. Hedges, S. B., &C. G. Sibley (1994): Molecules vs. morphology in avian evolution, The case of the “pelecaniform” birds. Proc. Natl. Acad. Sci, USA, 91: 9861–9865.Google Scholar
  47. Heidrich, P., &M. Wink (1997): Phylogenetic relationships in holarctic owls (Order Strigiformes): Evidence from nucleotide sequences of the mitochondrial cytochrome b gene. Proc. Int. Conf. Holarctic Raptors (in press)Google Scholar
  48. Heidrich, P., C. König &M. Wink (1995): Bioakustik, Taxonomie und molekulare Systematik amerikanischer Sperlingskäuze (Strigidae:Glaucidium spp.). Stuttgarter Beiträge zur Naturkunde A, 534: 1–47.Google Scholar
  49. Heidrich, P., D. Ristow &M. Wink (1996): Molekulare Differenzierung von Gelb- und Schwarzschnabelsturmtauchern (Calonectris diomedea, Puffinus puffinus, P. yelkouan) und Großmöwen des Silbermöwenkomplexes (Larus argentatus, L. fuscus, L. cachinnans). J. Orn. 137: 281–294.Google Scholar
  50. Helbig, A., M. Salomon, M. Wink &J. Bried (1993): Absence of mitochondrial gene flow between European and Iberian Chiffchaffs (Aves:Phylloscopus c. collybita, P.c. brehmii)? The taxonomic consequences. Results drawn from PCR and DNA sequencing. Comptes Rendues L'Acad. Sciences, Paris, 316, Serie III: 205–210.Google Scholar
  51. Helbig, A. J., I. Seibold, J. Martens &M. Wink (1995): Genetic differentiation and phylogenetic relationships of Bonelli's Warbler,Phylloscopus bonelli and Green WarblerP. nitidus. J. Avian Biol. 26: 139–153.Google Scholar
  52. Helm-Bychowski, K., &J. Cracraft (1993): Recovering a phylogenetic signal from DNA sequences, Relationships within the Corvine assemblage (Class Aves) as inferred from complete sequence of the mitochondrial DNA cytochrome-b-Gene. Mol. Biol. Evol. 10: 1196–1214.Google Scholar
  53. Henry, C. (1979): Le concept de niche écologique illustré par le cas de populations congénériques sympatriques du genreAcrocephalus. Rev. Ecol. 33: 457–492.Google Scholar
  54. Heuwinkel, H. (1982): Schalldruckpegel und Frequenzspektren der Gesänge vonAcrocephalus arundinaceus, A. scirpaceus, A. schoenobaenus undA. palustris und ihre Beziehung zur Biotopakustik. Ökol. Vögel 4: 85–174.Google Scholar
  55. (1990): The effect of vegetation on the transmission of songs of selected European passeriformes. Acta Biol. Benrodis 2: 133–150.Google Scholar
  56. Hillis, D., C. Moritz &B. K. Mable (1996): Molecular systematics, 2. edit., Sinauer.Google Scholar
  57. Hoi, H., T. Eichler &J. Dittami (1991): Territorial spacing and interspecific competition in three species of reed warblers. Oecologia 87: 443–448.Google Scholar
  58. Hoi, H., S. Kleindorfer, R. Ille &J. Dittami (1995): Prey abundance and male parental behaviour inAcrocephalus warblers. Ibis 137: 490–496.Google Scholar
  59. Jilka, A., &B. Leisler (1974): Die Einpassung dreier Rohrsängerarten (Acrocephalus schoenobaenus, A. scirpaceus, A. arundinaceus) in ihre Lebensräume in Bezug auf das Frequenzspektrum ihrer Reviergesänge. J. Orn. 115: 192–212.Google Scholar
  60. Kagawa, T. (1989): Interspecific relationships between two sympatric warblers Great Reed WarblerAcrocephalus arundinaceus and Schrenck's Reed WarblerA. bistrigiceps. Jap. J. Ornithol. 37: 129–144.Google Scholar
  61. Kemp, A., &T. Crowe (1993): A morphometric analysis ofFalco species. In:Nicholls, M. K., &R. Clarke (eds). The biology and conservation of small falcons, p 223–229. The Hawk and Owl Trust, London.Google Scholar
  62. Kennerley, P. R., &P. J. Leader (1992): The identification, status and distribution of smallAcrocephalus warblers in eastern China. Hongkong Bird Report 1991, 143–187.Google Scholar
  63. Kocher, T. D., W. K. Thomas, A. Meyer, S. V. Edwards, S. Pääbo, F. X. Villablanca &A. C. Wilson (1989): Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86: 6196–6200.Google Scholar
  64. Komdeur, J. (1992): Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles Warbler. Nature 358: 493–495.Google Scholar
  65. ,S. Daan, J. Tinbergen &C. Mateman (1997): Extreme adaptive modification in sex ratio of the Seychelles warbler's eggs. Nature 385: 522–525.Google Scholar
  66. Kornegay, J. R., T. H. Kocher, L.A. Williams &A. C. Wilson (1993): Pathways of lysozyme evolution inferred from the sequences of cytochrome b in birds. J. Mol. Evol. 37: 367–379.Google Scholar
  67. Kumar S., K. Tamura &M. Nei (1993): MEGA — Molecular Evolutionary Genetics Analysis. Version 1.0. Pennsylvania State Univ.Google Scholar
  68. Lanyon, S. M. (1994): The importance of phylogeny in evolutionary biology: examples from DNA sequencing study of the New World blackbirds. J. Orn. 135: 340.Google Scholar
  69. Leisler, B. (1970): Vergleichende Untersuchungen zur ökologischen und systematischen Stellung des Mariskensängers (Acrocephalus [Lusciniola]melanopogon), ausgeführt am Neusiedler See. Diss., Univ. Wien.Google Scholar
  70. (1978): Kopfkratzen bei Rohrsängern (Acrocephalus). J. Orn. 119: 115–116.Google Scholar
  71. (1980): Morphological aspects of ecological specializations in bird genera. Ökol. Vögel 2: 199–220.Google Scholar
  72. (1981): Die ökologische Einnischung der mitteleuropäischen Rohrsänger (Acrocephalus, Sylviinae). I. Habitattrennung. Vogelwarte 31: 45–74.Google Scholar
  73. (1985): Öko-ethologische Voraussetzungen für die Entwicklung von Polygamie bei Rohrsängern (Acrocephalus). J. Orn. 126: 357–381.Google Scholar
  74. Ditto. (1988a): Interspecific interactions among European marsh-nesting passerines. Acta XIX Congr. Intern. Orn. Ottawa, 2635–2644.Google Scholar
  75. (1988b): Intra- und interspezifische Aggression bei Schilf- und Seggenrohrsänger (Acrocephalus schoenobaenus, A. paludicola): Ein Fall von akustischer Verwechslung? Vogelwarte 34: 281–290.Google Scholar
  76. &C. K. Catchpole (1992): The evolution of polygamy in European reed warblers of the genusAcrocephalus: a comparative approach. Ethol. Ecol. & Evol. 4:225–243.Google Scholar
  77. Leisler, B., &H. Winkler (1985): Ecomorphology. Current Orn. 2: 155–186.Google Scholar
  78. (1991): Ergebnisse und Konzepte ökomorphologischer Untersuchungen an Vögeln. J. Orn. 132: 373–425.Google Scholar
  79. Leisler, B., H. W. Ley &H. Winkler (1989): Habitat, behaviour and morphology ofAcrocephalus warblers: an integrated analysis. Ornis Scand. 20: 181–186.Google Scholar
  80. Leisler, B., H. Winkler &K.-H. Siebenrock (1997): Ökomorphologische Untersuchungen am Beispiel der Webervögel (Ploceidae) und Eisvögel (Alcedinidae). Mitt. Zool. Mus. Berl. 73, Suppl.: Ann. Orn. 21: 17–43.Google Scholar
  81. McCracken, K. G., &F. H. Sheldon (1997): Avian vocalizations and phylogenetic signal. Proc. Natl. Acad. Sci. USA 94: 3833–3836.Google Scholar
  82. Meise, W. (1976): Die Bedeutung der Oologie für die Systematik. Proc. XVI IOC 1974, 207–216.Google Scholar
  83. Meyer, A. (1994): Shortcomings of the cytochrome b gene as a molecular marker. Trends Ecol. Evol. 9: 278–280.Google Scholar
  84. Mooers, A. O., &P. H. Harvey (1994): Metabolic rate, generation time, and the rate of molecular evolution in birds. Mol. Phylog. Evol. 3: 344–350.Google Scholar
  85. Nishiumi, J., S. Yamagishi, H. Maekawa &C. Shimoda (1996): Paternal expenditure is related to brood sex ratio in ploygynous great reed warblers. Behav. Ecol. Sociobiol. 39: 211–217.Google Scholar
  86. Parker, S. A., &C. J. O. Harrison (1962): The validity of the genusLusciniola Gray. Bull. Brit. Orn. Cl. 83: 65–69.Google Scholar
  87. Pearson, D. J., &G. C. Backhurst (1988): Characters and taxonomic position of Basra Reed Warbler. Brit. Birds 81: 171–178.Google Scholar
  88. Peters, J. C. (1986): Check-list of Birds of the World. Vol. 11. Cambridge, Mass.Google Scholar
  89. Roberts, T. J. (1992): The birds of Pakistan. Vol. 2. Oxford.Google Scholar
  90. Salomonsen, F. (1929): Bemerkungen über die GruppeAcrocephalus arundinaceus. J. Orn. 77: 267–281.Google Scholar
  91. Schönwetter, M. (1979): Handbuch der Oologie. Bd. 2. Berlin.Google Scholar
  92. Schulze-Hagen, K., B. Leisler &H. Winkler (1996): Breeding success and reproductive strategies of twoAcrocephalus warblers. J. Orn. 137: 181–192.Google Scholar
  93. Schulze-Hagen, K., B. Leisler, T. R. Birkhead &A. Dyrcz (1995): Prolonged copulation, sperm reserves and sperm competition in the aquatic warblerAcrocephalus paludicola. Ibis 137: 85–91.Google Scholar
  94. Schulze-Hagen, K., I. Swatschek, A. Dyrcz &M. Wink (1993): Multiple Vaterschaften in Bruten des Seggenrohrsängers. Erste Ergebnisse des DNA-Fingerprinting. J. Orn. 134: 145–154.Google Scholar
  95. Seebohm, H. (1881): Catalogue of the birds in the British Museum. Vol. 5. London.Google Scholar
  96. Seibold, I., A. Helbig &M. Wink (1993): Molecular systematics of falcons (familyFalconidae). Naturwissenschaften 80: 87–90.Google Scholar
  97. Shirihai, H., C. S. Roselaar, A. J. Helbig, P. H. Barthel &A. J. van Loon (1995): Identification and taxonomy of largeAcrocephalus warblers. Dutch Birding 17: 229–239.Google Scholar
  98. Sibley, C. G., &B. L. Monroe (1990): Distribution and taxonomy of birds of the world. New Haven.Google Scholar
  99. Stresemann, E., &J. Arnold (1949): Speciation in the group of great reed warblers. J. Bombay Nat. Hist. Soc. 48: 428–443.Google Scholar
  100. Svensson, S. E. (1978): Territorial exclusion ofAcrocephalus schoenobaenus byA. scirpaceus in reed beds. Oikos 30: 467–474.Google Scholar
  101. Swofford, D. L. (1993): PAUP, Phylogenetic analysis using parsimony. Version 3.1.1 Illinois.Google Scholar
  102. Szekely, T., C. K. Catchpole, A. Devoogd, Z. Marchl &T. J. Devoogd (1996): Evolutionary changes in a song control area of the brain (HVC) are associated with evolutionary changes in song repertoire among European warblers (Sylviidae). Proc. R. Soc. Lond. B. 263: 607–610.Google Scholar
  103. Tarr, C. L., &R. C. Fleischer (1993): Mitochondrial-DNA variation and evolutionary relationships in the amakihi complex. Auk 110: 825–831.Google Scholar
  104. Vaurie, C. (1959): The birds of the Palaearctic Fauna. Order Passeriformes. London.Google Scholar
  105. Voous, K. H. (1975): An aberrant reed warbler, or: on the inequality of genera in birds. Ardeola 21: 977–985.Google Scholar
  106. (1977): List of recent Holarctic bird species. Passerines (part 1). Ibis 119: 223–250.Google Scholar
  107. White, C. M. N. (1952): The status of the genusCalamocichla. Ibis 94: 685–686.Google Scholar
  108. Williamson, K. (1968): Identification for ringers. 1. The generaCettia, Locustella, Acrocephalus andHippolais.Google Scholar
  109. Wilson, A. C., H. Ochmann &E. M. Prager (1987): Molecular time scale for evolution. Trends Genetics 3: 241–247.Google Scholar
  110. Wink, M. (1995): Phylogeny of Old and New World vultures (Aves:Accipitridae andCathartidae) inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Z. Naturforsch. 50c: 868–882.Google Scholar
  111. Wink, M., P. Heidrich &D. Ristow (1993b): Genetic evidence for speciation of the Manx shearwater (Puffinus puffinus) and the Mediterranean Shearwater (P. yelkouan). Vogelwelt 114: 226–232.Google Scholar
  112. Wink, M., P. Heidrich, U. Kahl, H. H. Witt &D. Ristow (1993a): Inter- and intraspecific variation of the nucleotide sequence for cytochrome b in Cory's shearwater (Calonectris diomedea), Manx Shearwater (Puffinus puffinus) and Fulmar (Fulmarus glacialis). Z. Naturforsch. 48c: 504–508.Google Scholar
  113. Winkler, H., &B. Leisler (1985): Morphological aspects of habitat selection in birds. In:M. Cody, Habitat selection in birds: 415–434. London.Google Scholar
  114. Winkler, D. W., &F. H. Sheldon (1994): Phylogenetic hierarchy in character variability and its causes: Lessons from character-state distributions in swallows, Hirundinidae. J. Orn. 135: 342.Google Scholar
  115. Wittmann, U., P. Heidrich, M. Wink &E. Gwinner (1995): Speciation in the stonechat (Saxicola torquata) inferred from nucleotide sequences of the cytochrome b gene. J. Zool. Syst. Evol. Research 33: 116–122.Google Scholar
  116. Wright, S. (1941): The “age and area” concept extended. Ecology 22: 345–347.Google Scholar
  117. Wolters, H. E. (1952): Die Gattungen der westpaläarktischen Sperlingsvögel (Ordn.Passeriformes). Bonn. Zool. Beitr. 3: 231–288.Google Scholar
  118. Ditto (1975–82): Die Vogelarten der Erde. Hamburg, Berlin.Google Scholar
  119. Zink, R. M., &J. C. Avise (1990): Patterns of mitochondrial DNA and allozyme evolution in the avian genusAmmodramus. Syst. Zool. 39: 148–161.Google Scholar
  120. Zink, R. M., &M. C. McKitrick (1995): The debate of species concepts and its implications for ornithology. Auk 112: 701–719.Google Scholar

Copyright information

© Verlag der Deutschen Ornithologen-Gesellschaft 1997

Authors and Affiliations

  • Bernd Leisler
    • 1
  • Petra Heidrich
    • 2
  • Karl Schulze-Hagen
    • 3
  • Michael Wink
    • 2
  1. 1.Max-Planck-Institut für Verhaltensphysiologie, Vogelwarte RadolfzellRadolfzell
  2. 2.Institut für Pharmazeutische Biologie der Universität HeidelbergHeidelberg
  3. 3.Mönchengladbach

Personalised recommendations