Advertisement

Archiv der Mathematik

, Volume 13, Issue 1, pp 110–119 | Cite as

Quadratische Formen und Kollineationsgruppen

  • Hanfried Lenz
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    R. Baer, Projectivities of finite projective planes. Amer. J. Math.69, 653–684 (1947).Google Scholar
  2. [1 a]
    N.Bourbaki, Eléments de Mathématique, Livre II, chapt. 9. Formes sesquilinéaires et formes quadratiques. Paris 1960.Google Scholar
  3. [2]
    R. H. Bruck andH. J. Ryser, The nonexistence of certain projective planes. Canadian J. Math.1, 88–93 (1949).Google Scholar
  4. [3]
    P. Dembowski, Verallgemeinerungen von Transitivitätsklassen endlicher projektiver Ebenen. Math. Z.69, 59–89 (1958).Google Scholar
  5. [4]
    M.Hall, The theory of groups. New York 1959.Google Scholar
  6. [5]
    H. Hasse, über die Darstellbarkeit von Zahlen durch quadratische Formen im Körper der rationalen Zahlen. J. reine angew. Math.152, 129–148 (1923).Google Scholar
  7. [6]
    K.Hensel, Zahlentheorie. Berlin, und Leipzig 1913.Google Scholar
  8. [7]
    D. R. Hughes, Regular collineation groups. Proc. Amer. Math. Soc.8, 159–165 (1957).Google Scholar
  9. [8]
    D. R. Hughes, Collineations and generalized incidence matrices. Trans. Amer. Math. Soc.86, 284–296 (1958).Google Scholar
  10. [9]
    B. W.Jones, The arithmetic theory of quadratic forms. Baltimore 1950.Google Scholar
  11. [10]
    E. T. Parker, On collineations of symmetric designs. Proc. Amer. Math. Soc.8, 350–351 (1957).Google Scholar
  12. [11]
    G.Pickert, Projektive Ebenen. Berlin-Göttingen-Heidelberg 1955.Google Scholar
  13. [12]
    G. L.Watson, Integral quadratic forms. Cambridge 1960.Google Scholar
  14. [13]
    E. Witt, Theorie der quadratischen Formen in beliebigen Körpern. J. reine angew. Math.176, 31–44 (1937).Google Scholar

Copyright information

© Birkhäuser Verlag 1962

Authors and Affiliations

  • Hanfried Lenz
    • 1
  1. 1.München 19

Personalised recommendations