Advertisement

Communications in Mathematical Physics

, Volume 18, Issue 3, pp 227–246 | Cite as

Small distance behaviour in field theory and power counting

  • K. Symanzik
Article

Abstract

For infinitesimal changes of vertex functions under infinitesimal variation of all renormalized parameters, linear combinations are found such that the net infinitesimal changes of all vertex functions are negligible relative to those functions themselves at large momenta in all orders of renormalized perturbation theory. The resulting linear first order partial differential equations for the asymptotic forms of the vertex functions are, in quantum electrodynamics, solved in terms of one universal function of one variable and one function of one variable for each vertex function whereby, in contrast to the renormalization group treatment of this problem, the universal function is obtained from nonasymptotic considerations. A relation to the breaking of scale invariance in renormalizable theories is described.

Keywords

Neural Network Partial Differential Equation Perturbation Theory Nonlinear Dynamics Renormalization Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gell-Mann, M., Low, F. E.: Phys. Rev.95, 1300 (1954).Google Scholar
  2. 2.
    Bogoliubov, N. N., Shirkov, D. V.: Introduction to the Theory of Quantized Fields. New York: Interscience Publ. 1959.Google Scholar
  3. 3.
    Wilson, K.: Phys. Rev.179, 1499 (1969).Google Scholar
  4. 4.
    Gell-Mann, M., Zachariasen, F.: Phys. Rev.123, 1065 (1961).Google Scholar
  5. 5.
    Symanzik, K.: Commun. Math. Phys.16, 48 (1970).Google Scholar
  6. 6.
    —— Coral Gables Conference on Fundamental Interactions at High Energy II, p. 263, Eds. A. Perlmutter, G. J. Iverson, R. M. Williams, New York: Gordon and Breach, 1970.Google Scholar
  7. 7.
    Stora, R., Symanzik, K.: (in preparation).Google Scholar
  8. 8.
    Landau, L. D., Abrikosov, A., Halatnikov, L.: Suppl. al Nuovo Cimento3, 80 (1956).Google Scholar
  9. 9.
    Appelquist, T., Primack, J. R.: Phys. Rev.1D, 1144 (1970).Google Scholar
  10. 10.
    Pais, A., Uhlenbeck, G. E.: Phys. Rev.79, 145 (1950).Google Scholar
  11. 11.
    Gupta, S. N.: Proc. Phys. Soc. (London)A 66, 129 (1953).Google Scholar
  12. 12.
    Johnson, R. W.: J. Math. Phys.10, (to appear).Google Scholar
  13. 13.
    Symanzik, K.: In: Lectures on High Energy Physics, Ed. B. Jakšić, Zagreb: 1961. Reprinted. New-York: Gordon and Breach 1966.Google Scholar
  14. 14.
    Taylor, J. G.: Suppl. al Nuovo Cimento1, 857 (1963).Google Scholar
  15. 15.
    Schwinger, J.: Proc. Natl. Acad. Sci. U.S.37, 452, 455 (1951).Google Scholar
  16. 16.
    —— Proc. Natl. Acad. Sci. U.S.48, 603 (1962).Google Scholar
  17. 17.
    Brandt, R. A.: Ann. Phys. (N. Y.)52, 122 (1969).Google Scholar
  18. 18.
    Jauch, J. M., Rohrlich, F.: The Theory of Photons and Electrons. Cambridge (Mass.): Addison-Wesley 1955.Google Scholar
  19. 19.
    Kazes, E.: Nuovo Cimento13, 1226 (1959).Google Scholar
  20. 20.
    Bjorken, J. D., Drell, S. D.: Relativistic Quantum Fields. New York: McGraw-Hill 1965.Google Scholar
  21. 21.
    Eriksson, K. E.: Nuovo Cimento27, 178 (1963).Google Scholar
  22. 22.
    Jackiw, R.: Nucl. Phys.B 5, 158 (1968).Google Scholar
  23. 23.
    Ward, J. C.: Phys. Rev.84, 897 (1951).Google Scholar
  24. 24.
    Hepp, K.: Commun. Math. Phys.2, 301 (1966).Google Scholar
  25. 25.
    Gross, D. J., Wess, J.: Phys. Rev., (to appear).Google Scholar
  26. 26.
    Callan Jr., C. G., Coleman, S., Jackiw, R.: Ann. Phys. (N. Y.), (to appear).Google Scholar
  27. 27.
    Lam, C. S.: Nuovo Cimento38, 1755 (1965).Google Scholar
  28. 28.
    Weinberg, S.: Phys. Rev.118, 838 (1960).Google Scholar
  29. 29.
    Fink, J. P.: J. Math. Phys.9, 1389 (1968).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • K. Symanzik
    • 1
  1. 1.Deutsches Elektronen-Synchrotron DESYHamburg

Personalised recommendations