Klinische Wochenschrift

, Volume 69, Issue 11, pp 486–490 | Cite as

Effect of somatostatin on kidney function and vasoactive hormone systems in healthy subjects

  • T. Tulassay
  • Z. Tulassay
  • W. Rascher
  • L. Szücs
  • H. W. Seyberth
  • I. Nagy


The acute effects of i.v. somatostatin (250 mcg bolus followed by 250 mcg/h continuous infusion for two hours) on renal hemodynamics, renal electrolyte and water handling, and urinary excretion of catecholamines and prostaglandins, as well as on plasma concentrations of arginine vasopressin, atrial natriuretic factor, norepinephrine, epinephrine, dopamine, glucagon, and plasma renin activity were studied in seven normal subjects. Somatostatin decreased effective renal plasma flow and glomerular filtration rate, osmotic and free water clearances, urine volume, and sodium and potassium excretion, while urinary osmolality, fractional excretion of sodium, and phosphate excretion increased significantly. Plasma concentrations of arginine vasopressin, atrial natriuretic factor, norepinephrine, epinephrine, and dopamine remained unchanged, while plasma renin activity (3.0±0.25 vs 2.4±0.2 ng AngI/ml/h;p}<0.01) and glucagon levels (40±11 vs 20±16 pg/ml;p}<0.01) decreased. Urinary excretion of norepinephrine, epinephrine, dopamine, PGE2, and PGF2alpha was suppressed under somatostatin. A significant positive correlation was found between urinary dopamine and sodium excretion (r=0.7;p}<0.001) and urinary postaglandin E2 and glomerular filtration (r=0.52;p}<0.01). Without accompanying changes in plasma osmolality and vasopressin concentration significant antidiuresis occurred, suggesting a direct tubular effect of somatostatin. However, the hormone-induced changes are due mainly to the decrease in renal plasma flow. The results demonstrate that somatostatin at supraphysiological doses exerts significant effects on the kidney.

Key words

Somatostatin Glomerular filtration rate Vasoactive hormones Renal sodium excretion 



paraaminohippuric acid


atrial natriuretic factor


arginine vasopressin


plasma renin activity


effective renal plasma flow


glomerular filtration rate


tubular reabsorption of phosphate








growth hormone


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ballermann BJ, Brenner BM (1986) Role of atrial peptides in body fluid homeostasis. Circ Res 58:619–630Google Scholar
  2. 2.
    Braseau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79Google Scholar
  3. 3.
    Brautbar N, Levine BS, Coburn JW, Kleeman CR (1979) Interaction of somatostatin with PTH and AVP: renal effects. Am J Physiol 237:E428–E431Google Scholar
  4. 4.
    Castellino P, Giordano C, Perna A, deFronzo RA (1988) Effects of plasma amino acid and hormone levels on renal hemodynamics in humans. Am J Physiol 255:F444-F449Google Scholar
  5. 5.
    DeFronzo R, Cooke CR, Andreas R, Faloona GR, Davis PJ (1975) The effect of insulin on renal handling of sodium, potassium, calcium and phosphate in man. J Clin Invest 55:845–855Google Scholar
  6. 6.
    Jaspan J, Polonsky K, Lewis M, Moossa AR (1979) Reduction in portal vein blood flow by somatostatin. Diabetes 28:888–892Google Scholar
  7. 7.
    Lee MR (1982) Dopamine and the kidney. Clin Sci 62:439–448Google Scholar
  8. 8.
    Manning PT, Schwartz D, Katsube MC, Holmberg SW, Needleman P (1985) Vasopressin-stimulated release of atriopeptins endocrine antagonists in fluid homeostasis. Science 229:395–397Google Scholar
  9. 9.
    Mountokalakis T, Levy M (1982) Effect of somatostatin on renal water handling in the dog. Can J Physiol Pharmacol 60:655–663Google Scholar
  10. 10.
    Mountokalakis T, Levy M (1985) Effect of selective octopeptide analogue of somatostatin on renal water excretion in the dog. Metabolism 34:408–409Google Scholar
  11. 11.
    Müller H, Mrongovius R, Seyberth HW (1981) Improved sample preparation for the quantitative mas spectrometric determination of prostaglandins in biological samples. J Chromatogr 226:450–458Google Scholar
  12. 12.
    Needleman P, Greenwald JE (1986) Atriopeptin: a cardiac hormone intimately involved in fluid, electrolyte and bloodpressure homeostasis. N Eng J Med 314:828–834Google Scholar
  13. 13.
    Price BA, Jaffe BM, Zimmer MJ (1985) The effect of somatostatin on central hemodynamics, renal blood flow and renal function in dogs. Surgery 97:285–289Google Scholar
  14. 14.
    Rascher W, Tulassay T, Lang RE (1985) Atrial natriuretic peptide in plasma of volume-overloaded children with chronic renal failure. Lancet II:303–305Google Scholar
  15. 15.
    Rascher W, Lang RE, Unger T, Ganten D, Gross F (1982) Vasopressin in brain of spontaneously hypertensive rats. Am J Physiol 242:H496-H499Google Scholar
  16. 16.
    Reichlin S (1983) Somatostatin (first of two parts). N Eng J Med 309:1495–1501Google Scholar
  17. 17.
    Reichlin S (1983) Somatostatin (second of two parts). N Eng J Med 309:1556–1563Google Scholar
  18. 18.
    Reid IA, Rose JC (1977) An intrarenal effect of somatostatin on water excretion. Endocrinology 100:782–785Google Scholar
  19. 19.
    Seyberth HW, Tulassay T, Kühl PG, Soeding K, Rascher W, Schweer H (1988) Excretion of primary prostanoids and their metabolites during acute volume expansion. Prostaglandins 35:221–231Google Scholar
  20. 20.
    Sieber C, Gnädinger M, Del Pozo E, Shaw S, Weidmann P (1988) Effect of a new somatostatin analogue SMS 201-995 (Sandostatin) on the renin-aldosterone axis. Clin Endocrinol 28:25–32Google Scholar
  21. 21.
    Sonnenberg GE, Keller U, Perruchoud A, Burckhardt D, Gyr K (1981) Effect of somatostatin on splanchnic hemodynamics in patients with cirrhosis of the liver and in normal subjects. Gastroenterology 80:526–532Google Scholar
  22. 22.
    Steer KA, Sochor M, Kunjara S, Doepfner W, McLean P (1988) The effect of a somatostatin analogue (SMS 201-995, Sandostatin) on the concentration of phosphoribosyl pyrophosphate and the activity of the pentose phosphate pathway in the early renal hypertrophy of experimental diabetes in the rat. Biochem Med Metab Biol 39:226–233Google Scholar
  23. 23.
    Tulassay T, Verebély T, Szücs L, Rascher W, Jellinek K, Reusz GY (1988–89) Vasoactive hormones in familial pheochromocytoma with predominant norepinephrine secretion. Child Nephrol Urol 9:228–231Google Scholar
  24. 24.
    Tydén G, Sammegärd H, Thulin L, Muhrbeck O, Efendic S (1979) Circulatory effects of somatostatin in anesthetized man. Acta Chir Scand 145:443–446Google Scholar
  25. 25.
    Vora JP, Owens DR, Ryder R, Atiea J, Luzio S, Hayes TM (1986) Effect of somatostatin on renal function. BMJ 292:1701–1702Google Scholar
  26. 26.
    Vora J, Owens DR, Luzio S, Atiea J, Ryder R, Hayes TM (1987) Renal response to intravenous somatostatin in insulin-dependent diabetic patients and normal subjects. J Clin Endocrin Metab 64:975–979Google Scholar
  27. 27.
    Walker BJ, Evans PA, Forsling ML, Nelstrop GA (1985) Somatostatin and water excretion in man: an intrarenal action. Clin Encodrinol 23:169–174Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • T. Tulassay
    • 1
  • Z. Tulassay
    • 1
  • W. Rascher
    • 3
  • L. Szücs
    • 2
  • H. W. Seyberth
    • 4
  • I. Nagy
    • 2
  1. 1.1st Department of Pediatrics and Internal MedicineSemmelweis University Medical SchoolBudapest
  2. 2.1st Department of PediatricsPostgraduate Medical UniversityBudapest
  3. 3.University Children's HospitalEssen
  4. 4.University Children's HospitalMarburg

Personalised recommendations