Communications in Mathematical Physics

, Volume 16, Issue 3, pp 238–246 | Cite as

Independence of local algebras in Quantum Field Theory



It is shown that localC*-algebras\(\mathfrak{A}\)(O1) and\(\mathfrak{A}\)(O2) associated with spacelike separated regionsO1 andO2 in the Minkowski space are independent. The proof is accomplished by a theorem concerning the structure of theC*-algebra generated by\(\mathfrak{A}\)(O1) and\(\mathfrak{A}\)(O2).


Neural Network Statistical Physic Field Theory Complex System Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haag, R., Kastler, D.: J. Math. Phys.5, 848 (1964).Google Scholar
  2. 2.
    Schlieder, S.: Commun. Math. Phys.13, 216 (1969).Google Scholar
  3. 3.
    Rickart, Charles E.: General theory of Banach algebras. Princeton: Van Nostrand 1960.Google Scholar
  4. 4.
    Dixmier, Jaques: Les C*-algèbres et leurs représentations. Paris: Gauthier-Villars 1964.Google Scholar
  5. 5.
    The original version of the proof of lemma 1 needed the assumption that there exists a representation π of\(\mathfrak{A}\) 12 with π(\(\mathfrak{A}\) 1)″ and π(\(\mathfrak{A}\) 2)″ fulfilling the proposition of Schlieder. The idea of the proof given in this paper is due to Borchers.Google Scholar
  6. 6.
    Turumaru, T.: Tôhoku Math. J.8, 281 (1956).Google Scholar
  7. 7.
    —— Tôhoku Math. J.16, 111 (1964).Google Scholar
  8. 9.
    Wulfsohn, A.: Bull. Sci. Math.87, 13 (1963).Google Scholar
  9. 10.
    Okayasu, T.: Tôhoku Math. J.18, 325 (1966).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • H. Roos
    • 1
  1. 1.Institut für Theoretische Physik der Universität GöttingenGermany

Personalised recommendations