Communications in Mathematical Physics

, Volume 16, Issue 3, pp 207–230 | Cite as

The operational approach to algebraic quantum theory I

  • C. M. Edwards


Recent work of Davies and Lewis has suggested a mathematical framework in which the notion of repeated measurements on statistical physical systems can be examined. This paper is concerned with an examination of their formulation in the abstract and its application to theC*-algebra model for quantum mechanics. In particular, a study is made of the notion of the restriction of a physical system and a definition, which coincides with the usual definition in theC*-algebra model, is formulated.


Neural Network Statistical Physic Recent Work Complex System Repeated Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfsen, E. M.: Facial structure of compact convex sets Proc. London Math. Soc.18, 385–404 (1968).Google Scholar
  2. 2.
    Davies, E. B.: On the Borel structure ofC*-algebras. Commun. Math. Phys.8, 147–164 (1968).Google Scholar
  3. 3.
    —— The structure of Σ*-algebras. Quart. J. Math.20, 351–366 (1969).Google Scholar
  4. 4.
    -- Lewis, J. T.: An operational approach to quantum probability (to appear).Google Scholar
  5. 5.
    Day, M. M.: Normed linear spaces. Berlin-Göttingen-Heidelberg: Springer 1962.Google Scholar
  6. 6.
    Dixmier, J.: Les algèbres d'operateurs dans l'espace hilbertien. Paris: Gauthier-Villars 1957.Google Scholar
  7. 7.
    —— LesC*-algèbres et leurs representations. Paris: Gauthier-Villars 1964.Google Scholar
  8. 8.
    Dunford, N., Schwartz, J. T.: Linear operators I. New York: Interscience 1958.Google Scholar
  9. 9.
    Edwards, C. M., Gerzon, M. A.: Monotone convergence in partially ordered vector spaces. Ann. Inst. Henri Poincaré A (to appear).Google Scholar
  10. 10.
    Edwards, D. A.: On the homeomorphic affine embedding of a locally compact cone into a Banach dual space endowed with the vague topology. Proc. London Math. Soc.14, 399–414 (1964).Google Scholar
  11. 11.
    Effros, E. G.: Order ideals in aC*-algebra and its dual. Duke Math. J.30, 391–412 (1963).Google Scholar
  12. 12.
    Ellis, A. J.: The duality of partially ordered normed vector spaces. J. London Math. Soc.39, 730–744 (1964).Google Scholar
  13. 13.
    —— Linear operators in partially ordered vector spaces. J. London Math. Soc.41, 323–332 (1966).Google Scholar
  14. 14.
    Ernest, J.: A decomposition theory for unitary representations of locally compact groups. Trans. Am. Math. Soc.104, 252–277 (1962).Google Scholar
  15. 15.
    Gerzon, M. A.: Convex sets with infinite convex combinations (pre-print).Google Scholar
  16. 16.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 846–861 (1964).Google Scholar
  17. 17.
    Hewitt, E., Ross, K. A.: Abstract harmonic analysis I. Berlin-Göttingen-Heidelberg-New York: Springer 1963.Google Scholar
  18. 18.
    Kadison, R. V.: Isometries of operator algebras. Ann. Math.54, 325–338 (1950).Google Scholar
  19. 19.
    —— States and representations. Trans. Am. Math. Soc.103, 304–319 (1962).Google Scholar
  20. 20.
    —— Transformation of states in operator theory and dynamics. Topology3, Suppl.2, 177–198 (1964).Google Scholar
  21. 21.
    Kelley, J. L., Namioka, I.: Linear topological spaces. New York: Van Nostrand 1963.Google Scholar
  22. 22.
    Mackey, G. W.: Borel structure in groups and their duals. Trans. Am. Math. Soc.85, 171–178 (1957).Google Scholar
  23. 23.
    —— Mathematical foundations of quantum mechanics. New York: Benjamin 1963.Google Scholar
  24. 24.
    Plymen, R.:C*-algebras and Mackey's axioms. Commun. Math. Phys.8, 132–147 (1968).Google Scholar
  25. 25.
    Prosser, R. T.: On the ideal structure of operator algebras. Mem. Am. Math. Soc.45, 1–28 (1963).Google Scholar
  26. 26.
    Segal, I. E.: Postulates for general quantum mechanics. Ann. Math.48, 930–948 (1948).Google Scholar
  27. 27.
    Størmer, E.: On partially ordered vector spaces and their duals with applications to simplexes andC*-algebras. Proc. London Math. Soc.18, 245–265 (1968).Google Scholar
  28. 28.
    Takeda, Z.: On the representations of operator algebras II. Tohoku Math. J.6, 212–219 (1954).Google Scholar
  29. 29.
    Von Neumann, J.: Mathematical foundations of quantum mechanics. Princeton: Princeton University Press 1957.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • C. M. Edwards
    • 1
  1. 1.The Queen's CollegeOxford

Personalised recommendations