Communications in Mathematical Physics

, Volume 33, Issue 4, pp 305–322 | Cite as

Entropy, information and quantum measurements

  • Göran Lindblad


The conditional entropy between two states of a quantum system is shown to be nonincreasing when a complete measurement is performed on the system. The information between two quantum systems is defined and is shown to be bounded above by the logarithmic correlation. This inequality is then applied to the measurement process. The entropy changes in the observed system and the measuring apparatus are compared with the information gain in the measurement.


Entropy Neural Network Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neumann, J. von: Mathematical foundations of quantum mechanics. Princeton University Press 1965Google Scholar
  2. 2.
    Lanford, O. E., Robinson, D. W.: J. Math. Phys.9, 1120–1125 (1968)Google Scholar
  3. 3.
    Szilard, L.: Z. Phys.53, 840–856 (1929)Google Scholar
  4. 4.
    Brillouin, L.: Science and information theory. New York: Academic Press 1962Google Scholar
  5. 5.
    Penrose, O.: Foundations of statistical mechanics. Oxford: Pergamon Press 1970Google Scholar
  6. 6.
    Jaynes, E. T.: Phys. Rev.106, 620–630 (1957) and108, 171–190 (1957)Google Scholar
  7. 7.
    Jauch, J. M., Baron, J. G.: Helv. Phys. Acta45, 220–232 (1972)Google Scholar
  8. 8.
    Umegaki, H.: Kodai Math. Sem. Rep.14, 59–85 (1962)Google Scholar
  9. 9.
    Ingarden, R. S., Kossakowski, A.: Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom et Phys.16, 61–65 (1968)Google Scholar
  10. 10.
    Majernik, V.: Acta Phys. Austriaca31, 271–299 (1970) and34, 83–92 (1972)Google Scholar
  11. 11.
    Lüders, G.: Ann. Physik,8, 322 (1951)Google Scholar
  12. 12.
    Umegaki, H.: Tôhoku Math. J.6, 177–181 (1954)Google Scholar
  13. 13.
    Arveson, W. B.: Am. J. Math.89, 578–672 (1967)Google Scholar
  14. 14.
    Ruelle, D.: Statistical mechanics. New York: Benjamin 1969Google Scholar
  15. 15.
    Falk, H.: Am. J. Phys.38, 858–869 (1970)Google Scholar
  16. 16.
    Lindblad, G.: Commun. math. Phys.28, 245–249 (1972)Google Scholar
  17. 17.
    Araki, H., Lieb, E. H.: Commun. math. Phys.18, 160–170 (1970)Google Scholar
  18. 18.
    Bendat, J., Sherman, S.: Trans. Am. Math. Soc.79, 58–71 (1955)Google Scholar
  19. 19.
    Khinchin, A. I.: Mathematical foundations of information theory. New York: Dover 1957Google Scholar
  20. 20.
    Nakamura, M., Umegaki, H.: Proc. Japan. Acad.37, 149–154 (1961)Google Scholar
  21. 21.
    Schatten, R.: Norm ideals of completely continuous operators. Berlin Göttingen Heidelberg: Springer 1960Google Scholar
  22. 22.
    Kullback, S.: Information theory and statistics. New York: Wiley 1959Google Scholar
  23. 23.
    Topping, D. M.: Lectures on von Neumann algebras. London: Van Nostrand Reinhold 1971Google Scholar
  24. 24.
    Segal, I. E.: J. Math. Mech.9, 623–629 (1960)Google Scholar
  25. 25.
    Kunze, R. A.: Trans. Amer. Math. Soc.89, 519–540 (1958)Google Scholar
  26. 26.
    Wigner, E. P.: Z. Phys.133, 101 (1952)Google Scholar
  27. 27.
    Araki, H., Yanase, M. M.: Phys. Rev.120, 622–626 (1960)Google Scholar
  28. 28.
    Yanase, M. M.: Phys. Rev.123, 666–668 (1961)Google Scholar
  29. 29.
    Daneri, A., Loinger, A., Prosperi, G. M.: Nucl. Phys. 33, 297–319 (1962)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Göran Lindblad
    • 1
  1. 1.Department of Theoretical PhysicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations