Advertisement

Communications in Mathematical Physics

, Volume 35, Issue 2, pp 87–92 | Cite as

GHS and other inequalities

  • Joel L. Lebowitz
Article

Abstract

We use a transformation due to Percus to give a simple derivation of the Griffiths, Hurst, and Sherman, and some other new inequalities, for Ising ferromagnets with pair interactions. The proof makes use of the Griffiths, Kelly, and Sherman and the Fortuin, Kasteleyn, and Ginibre inequalities.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Kelly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for example, Ruelle, D.: Statistical mechanics. New York: Benjamin 1969.Google Scholar
  2. 1a.
    Lebowitz, J. L.: Commun. math. Phys.28, 313 (1972).Google Scholar
  3. 2.
    Griffiths, R. B.: J. Math. Phys.8, 478, 484 (1967).Google Scholar
  4. 2a.
    Kelly, D. G., Sherman, S.: J. Math. Phys.9, 466 (1968)Google Scholar
  5. 3.
    Fortuin, C. M., Kasteleyn, P. W., Ginibre, J.: Commun. math. Phys.22, 89 (1971)Google Scholar
  6. 4.
    See for example, Simon, B.: Commun. math. Phys.31, 127 (1973)Google Scholar
  7. 5.
    Ginibre, J.: Commun. math. Phys.16, 310 (1970)Google Scholar
  8. 6.
    Cartier, P.: Seminaire Bourbaki, no. 431, 1972/73Google Scholar
  9. 7.
    Griffiths, R. B., Hurst, C. A., Sherman, S.: J. Math. Phys.11, 790 (1970)Google Scholar
  10. 8.
    Percus, J.: unpublishedGoogle Scholar
  11. 9.
    Duneau, M., Souillard, B., Iagolnitzer, D.: Commun. math. Phys.31, 191 (1973) and Analyticity and strong cluster properties for classical gases with finite range interaction (preprint)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Joel L. Lebowitz
    • 1
  1. 1.Belfer Graduate School of ScienceYeshiva UniversityNew YorkUSA

Personalised recommendations