Studia Geophysica et Geodaetica

, Volume 33, Issue 2, pp 177–197 | Cite as

Spherical tensor approach to the solution of the mantle stress problem

  • Ondřej Čadek
  • M. Pick
  • J. Šílený


The technique of spherical tensors is applied to the problem of stress in the mantle. An efficient method for stress computation is developed for the Newtonian mantle with spherical boundaries assuming that the density and gravitational potential in the form of harmonic expansions are known. The ways of including more complicated rheological models as well as the non-spherical shape of boundaries are outlined.


Пре¶rt;ложен меmо¶rt; рaсчеma нanряженuŭ в мaнmuu, коmорыŭ основaн нa nрuмененuu annaрama сферuческuхгaрмонuческuх mензоров. Пре¶rt;nолaгaеmся, чmо рaзложенuе nлоmносmu uгрaвumaцuонного nоmенцuaлa nо сферuческuм функцuям uзвесmно u чmо мaнmuя nре¶rt;сmaвляеm собоŭ вязкую жu¶rt;косmь со сферuческuмuгрaнuцaмu. Обсуж¶rt;ены возможносmu обобщенuя меmо¶rt;a нa случaŭ более сложноŭ реологuu сре¶rt;ы u несферuческоŭ формыгрaнuцы.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. F. Ashby, R. A. Verrall: Micromechanisms of Flow and Fracture, and their Relevance to the Rheology of the Upper Mantle. Phil. Trans. R. Soc. Lond., 288A (1977), 59.Google Scholar
  2. [2]
    H. W. Green II, R. S. Borch: The Pressure Dependence of Creep. Acta Metall., 35 (1987), 1301.Google Scholar
  3. [3]
    B. H. Hager, R. J. O'Connell: Kinematic Models of Large-scale Flow in the Earth's Mantle. J. Geoph. Res., 84 (1979), 1031.Google Scholar
  4. [4]
    I. Herrera: A Perturbation Method for Elastic Wave Propagation. J. Geoph. Res., 69 (1964), 3845.Google Scholar
  5. [5]
    M. N. Jones: Spherical Harmonics and Tensors for Classical Field Theory. Research Studies Press Ltd., Letchworth, England 1985.Google Scholar
  6. [6]
    Z. Martinec: Free Oscillations of the Earth. Travaux Géophys., XXXII (1984), No 591, 117.Google Scholar
  7. [7]
    Z. Martinec, K. Pěč: Three-Dimensional Density Distribution Generating the Observed Gravity Field of Planets: Part I. The Earth. In: Proc. Inter. Symp., Figure and Dynamics of the Earth, Moon and Planets, Prague, Sept. 15–20, 1986, Ed.: P. Holota, Prague 1987.Google Scholar
  8. [8]
    Z. Martinec, K. Pěč: Dpt. Geophys., Faculty of Math. and Phys., Charles University, Prague. Personal Communication, 1988.Google Scholar
  9. [9]
    J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elastico-plastic Bodies: An Introduction. Elsevier, Amsterodam etc. 1981.Google Scholar
  10. [10]
    J. P. Poirier: Creep of Crystals. High-temperature Deformation Processes in Metals, Ceramics and Minerals. Cambridge University Press, Cambridge 1983.Google Scholar
  11. [11]
    Д. А. Варщалович, А. Н. Москалев, В. К. Херсонский: Квантовая теория углового момента. Наука, Ленинград 1975.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1989

Authors and Affiliations

  • Ondřej Čadek
    • 1
  • M. Pick
  • J. Šílený
  1. 1.Department of Geophysics and Meteorology, Faculty of Mathematics and PhysicsCharles UniversityPrague

Personalised recommendations