Communications in Mathematical Physics

, Volume 20, Issue 3, pp 167–192 | Cite as

On the nature of turbulence

  • David Ruelle
  • Floris Takens


A mechanism for the generation of turbulence and related phenomena in dissipative systems is proposed.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, R., Marsden, J.: Foundations of mechanics. New York: Benjamin 1967.Google Scholar
  2. 2.
    Bass, J.: Fonctions stationnaires. Fonctions de corrélation. Application à la représentation spatio-temporelle de la turbulence. Ann. Inst. Henri Poincaré. Section B5, 135–193 (1969).Google Scholar
  3. 3.
    Brunovsky, P.: One-parameter families of diffeomorphisms. Symposium on Differential Equations and Dynamical Systems. Warwick 1968–69.Google Scholar
  4. 4.
    Hirsch, M., Pugh, C. C., Shub, M.: Invariant manifolds. Bull. A.M.S.76, 1015–1019 (1970).Google Scholar
  5. 5.
    —— —— -- Invariant manifolds. To appear.Google Scholar
  6. 6.
    Hopf, E.: Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems. Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig94, 1–22 (1942).Google Scholar
  7. 7.
    Kelley, A.: The stable, center-stable, center, center-unstable, and unstable manifolds. Published as Appendix C of R. Abraham and J. Robbin: Transversal mappings and flows. New York: Benjamin 1967.Google Scholar
  8. 8.
    Landau, L. D., Lifshitz, E. M.: Fluid mechanics. Oxford: Pergamon 1959.Google Scholar
  9. 9.
    Leray, J.: Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math.63, 193–248 (1934).Google Scholar
  10. 10.
    Moser, J.: Perturbation theory of quasiperiodic solutions of differential equations. Published in J. B. Keller and S. Antman: Bifurcation theory and nonlinear eigenvalue problems. New York: Benjamin 1969.Google Scholar
  11. 11.
    Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc.73, 747–817 (1967).Google Scholar
  12. 12.
    Thom, R.: Stabilité structurelle et morphogénèse. New York: Benjamin 1967.Google Scholar
  13. 13.
    Williams, R. F.: One-dimensional non-wandering sets. Topology6, 473–487 (1967).Google Scholar
  14. 14.
    Berger, M.: A bifurcation theory for nonlinear elliptic partial differential equations and related systems. In: Bifurcation theory and nonlinear eigenvalue problems. New York: Benjamin 1969.Google Scholar
  15. 15.
    Fife, P. C., Joseph, D. D.: Existence of convective solutions of the generalized Bénard problem which are analytic in their norm. Arch. Mech. Anal.33, 116–138 (1969).Google Scholar
  16. 16.
    Krasnosel'skii, M.: Topological methods in the theory of nonlinear integral equations. New York: Pergamon 1964.Google Scholar
  17. 17.
    Rabinowitz, P. H.: Existence and nonuniqueness of rectangular solutions of the Bénard problem. Arch. Rat. Mech. Anal.29, 32–57 (1968).Google Scholar
  18. 18.
    Velte, W.: Stabilität und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichungen beim Taylorproblem. Arch. Rat. Mech. Anal.22, 1–14 (1966).Google Scholar
  19. 19.
    Yudovich, V.: The bifurcation of a rotating flow of fluid. Dokl. Akad. Nauk SSSR169, 306–309 (1966).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • David Ruelle
    • 1
    • 2
  • Floris Takens
    • 1
    • 3
  1. 1.I.H.E.S.Bures-sur-YvetteFrance
  2. 2.The Institute for Advanced StudyPrincetonUSA
  3. 3.Universiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations