Advertisement

Communications in Mathematical Physics

, Volume 5, Issue 4, pp 288–300 | Cite as

Mean entropy of states in classical statistical mechanics

  • Derek W. Robinson
  • David Ruelle
Article

Abstract

The equilibrium states for an infinite system of classical mechanics may be represented by states over AbelianC* algebras. We consider here continuous and lattice systems and define a mean entropy for their states. The properties of this mean entropy are investigated: linearity, upper semi-continuity, integral representations. In the lattice case, it is found that our mean entropy coincides with theKolmogorov-Sinai invariant of ergodic theory.

Keywords

Entropy Neural Network Statistical Physic Equilibrium State Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Billingsley, P.: Ergodic theory and information. New York: John Wiley 1965.Google Scholar
  2. 2.
    Choquet, G., andP. A. Meyer: Ann. Inst. Fourier13, 139 (1963).Google Scholar
  3. 3.
    Doplicher, S., D. Kastler, andD. W. Robinson: Commun. Math. Phys.3, 1 (1966).Google Scholar
  4. 4.
    Jacobs, K.: Lecture notes on ergodic theory. Aarhus Universitet (1962–1963).Google Scholar
  5. 5.
    Kastler, D., andD. W. Robinson: Commun. Math. Phys.3, 151 (1966).Google Scholar
  6. 6.
    Lanford, O., andD. Ruelle: J. Math. Phys. (to appear).Google Scholar
  7. 7.
    Robinson, D. W., andD. Ruelle: Ann. Inst. Poincaré (to appear).Google Scholar
  8. 8.
    -- Unpublished.Google Scholar
  9. 9.
    Rokhlin, V. A.: Am. Math. Soc. Transl.49, 171 (1966).Google Scholar
  10. 10.
    Ruelle, D.: Lecture notes of the Summer School of Theoretical Physics, Cargèse, Corsica (1965), and Commun. Math. Phys.3, 133 (1966).Google Scholar
  11. 11.
    -- J. Math. Phys. (to appear).Google Scholar
  12. 12.
    Segal, I. E.: Duke Math. J.18, 221 (1951).Google Scholar
  13. 13.
    Yang, C. N., andT. D. Lee: Phys. Rev.87, 404, 410 (1952).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Derek W. Robinson
    • 1
  • David Ruelle
    • 2
  1. 1.CERNGeneva
  2. 2.I.H.E.S., Bures-sur-YvetteFrance

Personalised recommendations