Communications in Mathematical Physics

, Volume 35, Issue 1, pp 49–85 | Cite as

Local observables and particle statistics II

  • Sergio Doplicher
  • Rudolf Haag
  • John E. Roberts


Starting from the principles of local relativistic Quantum Theory without long range forces, we study the structure of the set of superselection sectors (charge quantum numbers) and its implications for the particle aspects of the theory. Without assuming the commutation properties (or even the existence) of unobservable fields connecting different sectors (charge-carrying fields), one has a particle-antiparticle symmetry, an intrinsic notion of statistics for identical particles, and a spin-statistics theorem. Particles in “pseudoreal sectors” cannot be their own antiparticles (a variant of Carruthers' theorem). We also show how scattering states and transition probabilities are obtained in this frame.


Quantum Number Quantum Theory Long Range Relativistic Quantum Particle Statistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doplicher, S., Haag, R., Roberts, J. E.: Commun. math. Phys.23, 199–230 (1971)Google Scholar
  2. 2.
    Epstein, H.: J. Math. Phys.8, 750–767 (1967)Google Scholar
  3. 3.
    Carruthers, P.: J. Math. Phys.9, 928–945 (1968)Google Scholar
  4. 4.
    Doplicher, S., Roberts, J. E.: Commun. math. Phys.28, 331–348 (1972)Google Scholar
  5. 5.
    Doplicher, S., Haag, R., Roberts, J. E.: Commun. math. Phys.15, 173–200 (1969)Google Scholar
  6. 6.
    Eilenberg, S., Kelly, G. M.: Closed categories. In: Proceedings of the Conference on Categorical Algebra, La Jolla 1965. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  7. 7.
    Borchers, H. J.: Commun. math. Phys.1, 281–307 (1965)Google Scholar
  8. 8.
    Wightman, A.S.: Analytic functions of several complex variables. Lectures at Les Houches Summer School 1960. Paris: Hermann 1960Google Scholar
  9. 9.
    Feldman, G., Matthews, P. T.: Phys. Rev.151, 1176–1180 (1966)Google Scholar
  10. 10.
    Streater, R. F.: Local fields with the wrong connection between spin and statistics. Commun. math. Phys.5, 88–96 (1967)Google Scholar
  11. 11.
    Doplicher, S., Haag, R., Roberts, J. E.: Commun. math. Phys.13, 1–23 (1969)Google Scholar
  12. 12.
    Wigner, E. P.: Group theory. New York: Academic Press 1959Google Scholar
  13. 13.
    Jost, R.: The general theory of quantized fields. Providence, Rhode Island: Am. Math. Soc. 1965Google Scholar
  14. 14.
    Hepp, K.: Commun. math. Phys.1, 95–111 (1965)Google Scholar
  15. 15.
    Ruelle, D.: Helv. Phys. Acta35, 147 (1962)Google Scholar
  16. 16.
    Araki, H., Haag, R.: Commun. math. Phys.4, 77–91 (1967)Google Scholar
  17. 17.
    Araki, H.: Lecture notes, ETH, Zürich (1961/62)Google Scholar
  18. 18.
    Haag, R., Swieca, J. A.: Commun. math. Phys.1, 308–320 (1965)Google Scholar
  19. 19.
    Dixmier, J.: Les algèbres d'opérateurs dans l'espace Hilbertien. Paris: Gauthier-Villars 1969Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Sergio Doplicher
    • 1
  • Rudolf Haag
    • 2
  • John E. Roberts
    • 2
  1. 1.Istituto Nazionale di Fisica Nucleare and Istituto Matematico G. CastelnuovoUniversità di RomaRomaItaly
  2. 2.II. Institut für Theoretische Physik der UniversitätHamburgFederal Republic of Germany

Personalised recommendations