Communications in Mathematical Physics

, Volume 35, Issue 4, pp 287–296 | Cite as

Causally continuous spacetimes

  • S. W. Hawking
  • R. K. Sachs


Causally continuous general relativistic spacetimes are defined and analyzed. In a causally continuous spacetime, the past and future of a local observer behave continuously under small perturbations of the metric or small changes in his location. Causally simple spacetimes are causally continuous; causally continuous spacetimes are causally stable. Possible reasons for taking causal continuity as a basic postulate in macrophysics are briefly discussed.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Small Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop, R.L., Goldberg, S.I.: Tensor analysis on manifolds, New York: MacMillan 1968Google Scholar
  2. 2.
    Budic, R., Sachs, R. K.: Set causality in general relativity (preprint, 1973)Google Scholar
  3. 3.
    Carter, B.: Phys. Rev.174, 1559 (1968)Google Scholar
  4. 4.
    Carter, B.: Gen. Rel. Grav.1, 349 (1971)Google Scholar
  5. 5.
    Geroch, R.: J. Math. Phys.11, 437 (1970)Google Scholar
  6. 6.
    Geroch, R., Kronheimer, E.H., Penrose, R.: Proc. Roy. Soc. A327, 545 (1972)Google Scholar
  7. 7.
    Hawking, S.: Proc. Roy. Soc. A308, 433 (1968)Google Scholar
  8. 8.
    Hawking, S., Penrose, R.: Proc. Roy. Soc. A314, 529 (1970)Google Scholar
  9. 9.
    Hawking, S., Ellis, G.F.R.: The large scale structure of space-time. Cambridge University Press, 1973Google Scholar
  10. 10.
    Kronheimer, E.H., Penrose, R.: Proc. Cambridge Phil. Soc.63, 481 (1967)Google Scholar
  11. 11.
    Penrose, R.: Proc. Roy. Soc. A284, 159 (1965)Google Scholar
  12. 12.
    Penrose, R.: The Structure of Spacetime. In: de Witt, C.M., Wheeler, J.A. (Eds.): Batelle recontres. New York: Benjamin, 1968Google Scholar
  13. 13.
    Penrose, R.: Techniques of differential topology in general relativity. Am. Math. Soc. Colloq. Publ., 1973Google Scholar
  14. 14.
    Seifert, H.: Gen. Rel. Grav.1, 3, 247 (1971)Google Scholar
  15. 15.
    Woodhouse, N.M.J.: J. Math. Phys.14, 4, 495 (1973)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • S. W. Hawking
    • 1
  • R. K. Sachs
    • 2
    • 3
  1. 1.Institute of AstronomyUniversity of CambridgeCambridgeUK
  2. 2.DAMTPUniversity of CambridgeUSA
  3. 3.Departments of Mathematics and PhysicsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations