Communications in Mathematical Physics

, Volume 12, Issue 2, pp 91–107

Existence of a phase-transition in a one-dimensional Ising ferromagnet

  • Freeman J. Dyson


Existence of a phase-transition is proved for an infinite linear chain of spins μj=±1, with an interaction energy
$$H = - \sum J(i - j)\mu _i \mu _j ,$$
whereJ(n) is positive and monotone decreasing, and the sums ΣJ(n) and Σ (log logn) [n3J(n)]−1 both converge. In particular, as conjectured byKac andThompson, a transition exists forJ(n)=n−α when 1 < α < 2. A possible extension of these results to Heisenberg ferromagnets is discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gallavotti, G., andS. Miracle-Sole: Commun. Math. Phys.5, 317 (1967).Google Scholar
  2. 2.
    Rushbrooke, G., andH. Ursell: Proc. Cambridge Phil. Soc.44, 263 (1948).Google Scholar
  3. 3.
    Baur, M., andL. Nosanow: J. Chem. Phys.37, 153 (1962).Google Scholar
  4. 4.
    Ruelle, D.: Commun. Math. Phys.9, 267 (1968).Google Scholar
  5. 5.
    Kac, M., andC. J. Thompson: Critical behavior of several lattice models with long-range interaction. Preprint, Rockefeller University, 1968.Google Scholar
  6. 6.
    Thompson, C. J.: (private communication) now believes that there is no transition forJ(n)=n −2.Google Scholar
  7. 7.
    Griffiths, R. B.: Commun. Math. Phys.6, 121 (1967).Google Scholar
  8. 8.
    —— J. Math. Phys.8, 478 (1967). See alsoKelly, D. G., andS. Sherman: J. Math. Phys.9, 466 (1968).Google Scholar
  9. 9.
    Hardy, G. H., J. E. Littlewood, andG. Polya: Inequalities, p. 43. Cambridge Univ. Press 1934.Google Scholar
  10. 10.
    Gallavotti, G., S. Miracle-Sole, andD. W. Robinson: Phys. Letters25 A, 493 (1967).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Freeman J. Dyson
    • 1
  1. 1.Institute for Advanced StudyPrinceton

Personalised recommendations