Communications in Mathematical Physics

, Volume 31, Issue 2, pp 83–112 | Cite as

Axioms for Euclidean Green's functions

  • Konrad Osterwalder
  • Robert Schrader


We establish necessary and sufficient conditions for Euclidean Green's functions to define a unique Wightman field theory.


Neural Network Statistical Physic Field Theory Complex System Nonlinear Dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borchers, H. J.: On structure of the algebra of field operators. Nuovo Cimento24, 214 (1962).Google Scholar
  2. 2.
    Dimock, J., Glimm, J.: Measures on the Schwartz distribution space and applications to quantum field theory (to appear).Google Scholar
  3. 3.
    Dyson, F. J.: TheS matrix in quantum electrodynamics. Phys. Rev.75, 1736 (1949).Google Scholar
  4. 4.
    Feldman, J.: A relativistic Feynman-Kac formula. Harvard preprint (1972).Google Scholar
  5. 5.
    Gelfand, I. M., Shilov, G. E.: Generalized functions, Vol. 2. New York: Academic Press 1964.Google Scholar
  6. 6.
    Glimm, J., Jaffe, A.: Quantum field theory models, in the 1970 Les Houches lectures. Dewitt, C., Stora, R. (Ed.). New York: Gordon and Breach Science Publishers 1971.Google Scholar
  7. 7.
    Glimm, J., Jaffe, A.: Positivity of the ϕ34 Hamiltonian, preprint 1972.Google Scholar
  8. 8.
    Glimm, J., Jaffe, A.: The λϕ24 quantum field theory without cutoffs IV. J. Math. Phys.13, 1568 (1972).Google Scholar
  9. 9.
    Glimm, J., Spencer, T.: The Wightman axioms and the mass gap for theP (ϕ)2 quantum field theory, preprint (1972).Google Scholar
  10. 10.
    Hall, D., Wightman, A. S.: A theorem on invariant analytic functions with applications to relativistic quantum field theory. Mat.-Fys. Medd. Danske Vid. Selsk.31, No. 5 (1951).Google Scholar
  11. 11.
    Hörmander, L.: On the division of distributions by polynomials. Arkiv Mat.3, 555 (1958).Google Scholar
  12. 12.
    Jost, R.: The general theory of quantized fields. Amer. Math. Soc. Publ., Providence R. I., 1965.Google Scholar
  13. 13.
    Jost, R.: Eine Bemerkung zum CTP-Theorem. Helv. Phys. Acta30, 409 (1957).Google Scholar
  14. 14.
    Jost, R.: Das Pauli-Prinzip und die Lorentz-Gruppe. In: Theoretical physics in the twentieth century, ed. Fierz, M., Weisskopf, V. New York: Interscience Publ. 1960.Google Scholar
  15. 15.
    Nelson, E.: Quantum fields and Markoff fields. Amer. Math. Soc. Summer Institute on PDE, held at Berkeley, 1971.Google Scholar
  16. 16.
    Nelson, E.: Construction of quantum fields from Markoff fields, preprint (1972).Google Scholar
  17. 17.
    Nelson, E.: The free Markoff field, preprint (1972).Google Scholar
  18. 18.
    Osterwalder, K., Schrader, R.: Euclidean Fermi fields and a Feynman-Kac formula for Boson-Fermion models, Helv. Phys. Acta, to appear, and Phys. Rev. Lett.29, 1423 (1972).Google Scholar
  19. 19.
    Robertson, A. P., Robertson, W. J.: Topological vector spaces. London and New York: Cambridge Univ. Press 1964.Google Scholar
  20. 20.
    Ruelle, D.: Connection between Wightman functions and Green functions inP-space. Nuovo Cimento19, 356 (1961).Google Scholar
  21. 21.
    Schwinger, J.: On the Euclidean structure of relativistic field theory. Proc. Natl. Acad. Sci. U.S.44, 956 (1958).Google Scholar
  22. 22.
    Schwinger, J.: Euclidean quantum electrodynamics. Phys. Rev.115, 721 (1959).Google Scholar
  23. 23.
    Streater, R. F., Wightman, A. S.: PCT, spin and statistics and all that. New York: Benjamin 1964.Google Scholar
  24. 24.
    Symanzik, K.: Euclidean quantum field theory. I. Equations for a scalar model. J. Math. Phys.7, 510 (1966).Google Scholar
  25. 25.
    Symanzik, K.: Euclidean quantum field theory. In: Proceedings of the International School of Physics “ENRICO FERMI”, Varenna Course XLV, ed. Jost, R. New York: Academic Press 1969.Google Scholar
  26. 26.
    Vladimirov, V. S.: Methods of the theory of functions of several complex variables. Cambridge and London: MIT Press 1966.Google Scholar
  27. 27.
    Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc.36, 63 (1934).Google Scholar
  28. 28.
    Wightman, A. S.: Quantum field theory and analytic functions of several complex variables. J. Indian Math. Soc.24, 625 (1960).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Konrad Osterwalder
    • 1
  • Robert Schrader
    • 1
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations