Communications in Mathematical Physics

, Volume 31, Issue 2, pp 83–112 | Cite as

Axioms for Euclidean Green's functions

  • Konrad Osterwalder
  • Robert Schrader


We establish necessary and sufficient conditions for Euclidean Green's functions to define a unique Wightman field theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borchers, H. J.: On structure of the algebra of field operators. Nuovo Cimento24, 214 (1962).Google Scholar
  2. 2.
    Dimock, J., Glimm, J.: Measures on the Schwartz distribution space and applications to quantum field theory (to appear).Google Scholar
  3. 3.
    Dyson, F. J.: TheS matrix in quantum electrodynamics. Phys. Rev.75, 1736 (1949).Google Scholar
  4. 4.
    Feldman, J.: A relativistic Feynman-Kac formula. Harvard preprint (1972).Google Scholar
  5. 5.
    Gelfand, I. M., Shilov, G. E.: Generalized functions, Vol. 2. New York: Academic Press 1964.Google Scholar
  6. 6.
    Glimm, J., Jaffe, A.: Quantum field theory models, in the 1970 Les Houches lectures. Dewitt, C., Stora, R. (Ed.). New York: Gordon and Breach Science Publishers 1971.Google Scholar
  7. 7.
    Glimm, J., Jaffe, A.: Positivity of the ϕ34 Hamiltonian, preprint 1972.Google Scholar
  8. 8.
    Glimm, J., Jaffe, A.: The λϕ24 quantum field theory without cutoffs IV. J. Math. Phys.13, 1568 (1972).Google Scholar
  9. 9.
    Glimm, J., Spencer, T.: The Wightman axioms and the mass gap for theP (ϕ)2 quantum field theory, preprint (1972).Google Scholar
  10. 10.
    Hall, D., Wightman, A. S.: A theorem on invariant analytic functions with applications to relativistic quantum field theory. Mat.-Fys. Medd. Danske Vid. Selsk.31, No. 5 (1951).Google Scholar
  11. 11.
    Hörmander, L.: On the division of distributions by polynomials. Arkiv Mat.3, 555 (1958).Google Scholar
  12. 12.
    Jost, R.: The general theory of quantized fields. Amer. Math. Soc. Publ., Providence R. I., 1965.Google Scholar
  13. 13.
    Jost, R.: Eine Bemerkung zum CTP-Theorem. Helv. Phys. Acta30, 409 (1957).Google Scholar
  14. 14.
    Jost, R.: Das Pauli-Prinzip und die Lorentz-Gruppe. In: Theoretical physics in the twentieth century, ed. Fierz, M., Weisskopf, V. New York: Interscience Publ. 1960.Google Scholar
  15. 15.
    Nelson, E.: Quantum fields and Markoff fields. Amer. Math. Soc. Summer Institute on PDE, held at Berkeley, 1971.Google Scholar
  16. 16.
    Nelson, E.: Construction of quantum fields from Markoff fields, preprint (1972).Google Scholar
  17. 17.
    Nelson, E.: The free Markoff field, preprint (1972).Google Scholar
  18. 18.
    Osterwalder, K., Schrader, R.: Euclidean Fermi fields and a Feynman-Kac formula for Boson-Fermion models, Helv. Phys. Acta, to appear, and Phys. Rev. Lett.29, 1423 (1972).Google Scholar
  19. 19.
    Robertson, A. P., Robertson, W. J.: Topological vector spaces. London and New York: Cambridge Univ. Press 1964.Google Scholar
  20. 20.
    Ruelle, D.: Connection between Wightman functions and Green functions inP-space. Nuovo Cimento19, 356 (1961).Google Scholar
  21. 21.
    Schwinger, J.: On the Euclidean structure of relativistic field theory. Proc. Natl. Acad. Sci. U.S.44, 956 (1958).Google Scholar
  22. 22.
    Schwinger, J.: Euclidean quantum electrodynamics. Phys. Rev.115, 721 (1959).Google Scholar
  23. 23.
    Streater, R. F., Wightman, A. S.: PCT, spin and statistics and all that. New York: Benjamin 1964.Google Scholar
  24. 24.
    Symanzik, K.: Euclidean quantum field theory. I. Equations for a scalar model. J. Math. Phys.7, 510 (1966).Google Scholar
  25. 25.
    Symanzik, K.: Euclidean quantum field theory. In: Proceedings of the International School of Physics “ENRICO FERMI”, Varenna Course XLV, ed. Jost, R. New York: Academic Press 1969.Google Scholar
  26. 26.
    Vladimirov, V. S.: Methods of the theory of functions of several complex variables. Cambridge and London: MIT Press 1966.Google Scholar
  27. 27.
    Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc.36, 63 (1934).Google Scholar
  28. 28.
    Wightman, A. S.: Quantum field theory and analytic functions of several complex variables. J. Indian Math. Soc.24, 625 (1960).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Konrad Osterwalder
    • 1
  • Robert Schrader
    • 1
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations