Communications in Mathematical Physics

, Volume 15, Issue 4, pp 329–336

Discrete isotropies in a class of cosmological models

  • B. G. Schmidt


It is shown that a certain class of cosmological models admits discrete isotropies. These models are solutions of Einsteins field equations, characterised by: (1) the matter is described as a perfect fluid, and (2) there exists a group of motions simply transitive on three-surfaces orthogonal to the fluid flow vector.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ellis, G. F. R., MacCallum, M. A. H.: Commun. Math. Phys.12, 108 (1969).Google Scholar
  2. 2.
    Cohn, P.: Lie groups. Cambridge: University Press 1967.Google Scholar
  3. 3.
    Helgason, S.: Differential geometry and symmetric spaces. New York: Academic Press 1962.Google Scholar
  4. 4.
    Geroch, R.: Preprint. Domain of dependence. 1969.Google Scholar
  5. 5.
    Stewart, J. M., Ellis, G. F. R.: J. Math. Phys.9, 1072 (1968).Google Scholar
  6. 6.
    Jordan, P., Ehlers, J., Kundt, W.: Akad. Wiss. Lit. (Mainz), Abhandl. Math. Nat. Kl. No. 7 (1960).Google Scholar
  7. 7.
    Iwasawa, K.: Ann. Math.50, 507 (1949).Google Scholar
  8. 8.
    Pontrjagin, L.: Topological groups. Princeton: University Press 1946.Google Scholar
  9. 9.
    Penrose, R.: Structure of space time, Chapter VII of Battelle Rencontres, ed. C. M. DeWitt and J. A. Wheeler. New York: W. A. Benjamin, Inc. 1968.Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • B. G. Schmidt
    • 1
    • 2
  1. 1.Department of Applied Mathematics and Theoretical PhysicsCambridge
  2. 2.I. Institut für Theoretische Physik der Universität 2Hamburg 36

Personalised recommendations