Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 46, Issue 1, pp 23–30 | Cite as

Bistability and nonequilibrium phase transitions in a semiconductor recombination model with impact ionization of donors

  • E. Schöll
Article

Abstract

A model for a recombination instability in a semiconductor far from equilibrium is analysed. It is based upon the simultaneous impact ionization of ground state and excited donors at low temperature. The number and the stability of spatially homogeneous steady states and their dependence upon external control parameters is investigated. For certain values of these parameters bistability andS-shaped current-voltage characteristics are found. Nonequilibrium phase transitions of first order between low and high conductivity states can be induced by varying the applied voltage. If certain generation coefficients are negligible, the transition changes from first to second order above some “tricritical” value of the other parameters.

Keywords

Neural Network Phase Transition Recombination Control Parameter Applied Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Volkov, A.F., Kogan, Sh.M.: Sov. Phys. Usp.11, 881 (1969)Google Scholar
  2. 2.
    Thomas, H.: In: Synergetics. Haken, H. (ed.) Stuttgart: Teubner 1973Google Scholar
  3. 3.
    Bonch-Bruevich, V.L., Zvyagin, I.P., Mironov, A.G.: Domain Electrical Instabilities in Semiconductors. Consultant Bureau (New York) 1975Google Scholar
  4. 4.
    Shaw, M.P., Grubin, H.L., Solomon, P.: The Gunn-Hilsum Effect. New York: Academic Press 1979Google Scholar
  5. 5.
    Pogrebnyak, V.A.: Sov. Phys. Semicond.14, 1210 (1980)Google Scholar
  6. 6.
    Khosla, R.P., Fischer, J.R., Burkey, B.C.: Phys. Rev. B7, 2551 (1973)Google Scholar
  7. 7a.
    Shaw, M.P., Subhani, K.F.: Solid. State Electron.24, 233 (1981)Google Scholar
  8. 7b.
    Adler, D., Henisch, H.K., Mott, N.F.: Rev. Mod. Phys.50, 209 (1978)Google Scholar
  9. 7c.
    Adler, D., Shur, M.S., Silver, M., Ovshinsky, S.R.: J. Appl. Phys.51, 3289 (1980)Google Scholar
  10. 8.
    Solomon, P.: J. Vac. Sci. Technol.14, 1122 (1977)Google Scholar
  11. 8a.
    Klein, N.: Adv. Electron. Electron Phys.26, 309 (1969)Google Scholar
  12. 9.
    Schöll, E.: Proc. R. Soc. A365, 511 (1979)Google Scholar
  13. 10a.
    Koenig, S.H., Brown, R.D., Schillinger, W.: Phys. Rev.128, 1668 (1962)Google Scholar
  14. 10b.
    Zylbersztejn, A.: J. Phys. Chem. Solids23, 297 (1962)Google Scholar
  15. 10c.
    Sclar, N., Burstein, E.: J. Phys. Chem. Solids2, 1 (1957)Google Scholar
  16. 11.
    Reynolds, R.A.: Solid State Electron.11, 385 (1968)Google Scholar
  17. 11a.
    Stillman, G.E., Wolfe, C.M., Dimmock, J.O.: Semicond. Semimetals12, 169 (1977)Google Scholar
  18. 12.
    Heisel, W., Böhm, W.R., Prettl, W.: Int. J. Infrared Millim. Waves2, 829 (1981)Google Scholar
  19. 13.
    Putley, E.H.: Semicond. Semimetals1, 289 (1966)Google Scholar
  20. 14.
    Crandall, R.S.: J. Phys. Chem. Solids31, 2069 (1970); Phys. Rev. B1, 730 (1974)Google Scholar
  21. 15.
    Zabrodskij, A.G., Shlimak, I.S.: Sov. Phys. Solid State16, 1528 (1975)Google Scholar
  22. 16.
    Pickin, W.: Solid State Electron.21, 309, 1299 (1978)Google Scholar
  23. 17a.
    Klein, N., Solomon, P.: J. Appl. Phys.47, 4364 (1976)Google Scholar
  24. 17b.
    Kashat, I.; Klein, N.: J. Appl. Phys.48, 5217 (1977) Klein, N.: Preprint 1981Google Scholar
  25. 18.
    Schöll, E.: J. Physique, 3rd Int. Conf. Hot Carriers in Semiconductors (1981)Google Scholar
  26. 19.
    Schlögl, F.: Z. Phys.253, 147 (1972)Google Scholar
  27. 20a.
    Haken, H.: Synergetics. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  28. 20b.
    Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. New York: Wiley 1977Google Scholar
  29. 20c.
    Schlögl, F.: Phys. Rep.62, 267 (1980)Google Scholar
  30. 21.
    Büttiker, M., Thomas, H.: Solid State Electron.21, 95 (1978), Z. Phys. B-Condensed Matter33, 275 (1979);34, 301 (1979)Google Scholar
  31. 22a.
    Landsberg, P.T., Pimpale, A.: J. Phys. C9, 1243 (1976)Google Scholar
  32. 22b.
    Pimpale, A., Landsberg, P.T.: J. Phys. C10, 1447 (1977)Google Scholar
  33. 23a.
    Schöll, E., Landsberg, P.T.: Proc. R. Soc. A365, 495 (1979)Google Scholar
  34. 23b.
    Landsberg, P.T., Robbins, D.J., Schöll, E.: Phys. Status Solidi (a)50, 423 (1978)Google Scholar
  35. 23c.
    Robbins, D.J., Landsberg, P.T., Schöll, E.: Phys. Status Solidi (a)65, 353 (1981)Google Scholar
  36. 24.
    Landsberg, P.T.: Eur. J. Phys.1, 31 (1980)Google Scholar
  37. 25.
    Pimpale, A., Landsberg, P.T., Bonilla, L.L., Velarde, M.G.: J. Phys. Chem. Solids42, 873 (1981)Google Scholar
  38. 26a.
    Landsberg, P.T.: Semiconductor Statistics. In: Handbook of Semiconductors. Moss, T.S. (ed.), Vol. I, Chap. 8, Amsterdam: North-Holland 1981/82Google Scholar
  39. 26b.
    Stumpf, H.: Quantum Processes in Polar Semiconductors. Braunschweig: Vieweg 1982Google Scholar
  40. 27a.
    Hanusse, P.: C.R. Acad. Sci. C274, 1245 (1972)Google Scholar
  41. 27b.
    Tyson, J.J., Light, L.C.: J. Chem. Phys.59, 4164 (1973)Google Scholar
  42. 28.
    Robbins, D.J.: Phys. Status Solidi (b)97, 9, 387;98 11 (1980) Shockley, W.: Solid State Electron.2, 35 (1961)Google Scholar
  43. 29.
    Poehler, T.O.: Phys. Rev. B4, 1223 (1971)Google Scholar
  44. 30.
    Walgraef, D., Borckmans, P., Dewel, G.: Z. Phys. B-Condensed Matter30, 437 (1978)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • E. Schöll
    • 1
  1. 1.Institut für Theoretische Physik BRheinisch-Westfälische Technische HochschuleAachenFederal Republic of Germany

Personalised recommendations