Journal of Clinical Monitoring

, Volume 2, Issue 2, pp 125–139 | Cite as

History of blood gas analysis. IV. Leland Clark's oxygen electrode

  • John W. Severinghaus
  • Poul B. Astrup
Historical Review


The electrochemical reduction of oxygen was discovered by Heinrich Danneel and Walther Nernst in 1897. Polarography using dropping mercury was discovered accidentally by Jaroslav Heyrovsky in Prague in 1922. This method produced the first measured oxygen tension values in plasma and blood in the 1940s. Brink, Davies, and Bronk implanted platinum electrodes in tissue to study oxygen supply, or availability, from about 1940, but these bare electrodes became poisoned when immersed in blood. Leland Clark sealed a platinum cathode in glass and covered it first with cellophane; he then tested silastic and polyethylene membranes. In 1954 Clark conceived and constructed the first membrane-covered oxygen electrode having both the anode and cathode behind a nonconductive polyethylene membrane. The limited permeability of polyethylene to oxygen reduced depletion of oxygen from the sample, making possible quantitative measurements of oxygen tension in blood, solutions, or gases. This invention led to the introduction of modern blood gas apparatus.

Key words

Measurement techniques: electrodes, polarographic, membrane, dropping mercury cathodes, oxygen Brain: oxygen waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark LC. Oxygen is like love. In: Huch A, Huch R, Lucey JF, eds. Continuous transcutaneous blood gas monitoring. Birth defects: original article series. Vol. XV, No 4. New York: Liss, 1979:33–35Google Scholar
  2. 2.
    Roughton FJW, Darling RC, Root WS. Factors affecting the determination of oxygen capacity, content and pressure in human arterial blood. Am J Physiol 1944;142:708–720Google Scholar
  3. 3.
    Barcroft J, Nagahashi M. Direct measurement of partial pressure of oxygen in human blood. J Physiol 1921;55:339–345PubMedGoogle Scholar
  4. 4.
    Severighaus JW, Astrup PB. History of blood gas analysis. III. Carbon dioxide tension. J Clin Monit 1985;60–75Google Scholar
  5. 5.
    Danneel HL. Uber den durch diffundierende Gase hervorgerufenen Reststrom. Z Elektrochem 1897/98;4:227–242CrossRefGoogle Scholar
  6. 6.
    Heyrovsky J. Electrolysis with the dropping mercury electrode. Chemicke Listy 1922;16:256–304Google Scholar
  7. 7.
    Comroe JH Jr. Retrospectoscope: insights into medical discovery. Menlo Park, CA: Von Gehr Press, 1977:30Google Scholar
  8. 8.
    Heyrovsky J. The trends of polarography. Nobel Lecture, December 11, 1959. In: Nobel lectures. Chemistry. 1942–1962. Amsterdam: Elsevier, 1964:564–584Google Scholar
  9. 9.
    Heyrovsky J, Shikata M. Researches with the dropping mercury cathode. II. The polarograph. Rec Trav Chim 1925;44:496–498Google Scholar
  10. 10.
    Müller OH. The Polarographic Method of Analysis. Easton, PA: Chemical Education Publishing, 1941:27Google Scholar
  11. 11.
    Kolthoff IM, Laitinen HA. Voltametric determination of oxygen. Science 1940;92:152–154PubMedCrossRefGoogle Scholar
  12. 12.
    12. Kolthoff IM, Lingane JJ. Polarography. New York: Interscience Publishers, 1941:1–510Google Scholar
  13. 13.
    Prat S. Die Anwendung der polarographischem Methodic in der Biologie. Biochem Z 1926;175:268–273Google Scholar
  14. 14.
    Vitek V. Polarographic studies with the dropping mercury cathode. LVII. The estimation of oxygen contained in gases and solutions. Coll Czech Chem Communicat 1935;7:537–547Google Scholar
  15. 15.
    Müller OH, Baumberger JP. A continuous method for oxygen determination. Trans West Soc Naturalists. Eighth Annual Winter Meeting, Dec 26–28, 1935Google Scholar
  16. 16.
    Baumberger JP. Determination of the oxygen dissociation curve of oxyhemoglobin by a new method. Am J Physiol 1938;123:10Google Scholar
  17. 17.
    Petdering HG, Daniels F. Determination of dissolved O2 by means of the dropping mercury electrode. J Am Chem Soc 1938;60:2796–2802CrossRefGoogle Scholar
  18. 18.
    Beecher HK, Follansbee R, Murphy AJ, Craig FN. Determination of the oxygen content of small quantities of body fluids by polarographic analysis. J Biol Chem 1942;146:197–206Google Scholar
  19. 19.
    Berggren SM. The oxygen deficit of arterial blood caused by nonventilating parts of the lung. Acta Physiol Scand 1942;4(Suppl 11):1–92Google Scholar
  20. 20.
    Wiesinger K. Die polarographische Messung der Sauerstoffspannung im Blut und ihre klinische Anwendung zur Beurteilung der Lungenfunktion. Helv Physiol Pharmacol Acta (Suppl 7) 1950:1–80Google Scholar
  21. 21.
    Bartels H. Potentiometrische Bestimmung des Sauerstoffdruckes im Vollblut mit der Quecksilbertropfelektrode. Theorie und Versuche. Arch Ges Physiol 1951;254:107–125CrossRefGoogle Scholar
  22. 22.
    Bartels H, Laue D. Die praktische Durchfuhrung der potentiometrischen Messung des Sauerstoffdruckes im Vollblut. Arch Ges Physiol 1951;254:126–136CrossRefGoogle Scholar
  23. 23.
    Glasstone S. The limiting current density in the electrodeposition of noble metals. Trans Am Electrochem Soc 1931;59:277–285Google Scholar
  24. 24.
    Bronk DW, Brink F, Connelly CM, et al. The time course of recovery of oxygen consumption in nerve. Fed Proc 1947;6:83PubMedGoogle Scholar
  25. 25.
    Davies PW, Brink F Jr. Microelectrodes for measuring local O2 tension in tissues. Rev Sci Instrum 1942;13:524–533CrossRefGoogle Scholar
  26. 26.
    Carlson FD, Brink F Jr, Bronk DW. A continuous flow respirometer utilizing the oxygen cathode. Rev Sci Instrum 1950;21:923–932PubMedCrossRefGoogle Scholar
  27. 27.
    Connelly CM, Bronk DW, Brink F Jr. A sensitive respirometer for the measurement of rapid changes in metabolism of oxygen. Rev Sci Instrum 1953;24:638–695CrossRefGoogle Scholar
  28. 28.
    Davies PW, Grenell RG. Metabolism and function in the cerebral cortex under local perfusion, with the aid of an oxygen cathode for surface measurement of cortical oxygen consumption. J Neurophysiol 1962;25:651–683PubMedGoogle Scholar
  29. 29.
    Davies PW, Remond A. Oxygen consumption of the cerebral cortex of the cat during Metrazol convulsions. Proc Assoc Res Nerv Ment Dis 1946;26:205–217Google Scholar
  30. 30.
    Larrabee MG. Oxygen consumption of excised sympathetic ganglia at rest and in activity. J Neurochem 1958;2:81–101PubMedCrossRefGoogle Scholar
  31. 31.
    Larrabee MG, Bronk DW. Metabolic requirements of sympathetic neurons. Cold Spr Harbor Symp Quant Biol 1952;17:245–266Google Scholar
  32. 32.
    Davies PW. The oxygen cathode. In: Nastuk, WL, ed. Physical techniques in biological research. Vol. IV. Special methods. New York: Academic, 1962:137–179Google Scholar
  33. 33.
    Charlton G. A microelectrode for determination of dissolved oxygen in tissues. J Appl Physiol 1961;16:729–733PubMedGoogle Scholar
  34. 34.
    Clark LC, Misrahy G, Fox RP. Chronically implanted polarographic electrodes. J Appl Physiol 1958;13:85–91PubMedGoogle Scholar
  35. 35.
    Lübbers DW, Baumgärtl H, Fabel H, et al. Principle of construction and application of various platinum electrodes. Prog Respir Res 1969;3:136–146Google Scholar
  36. 36.
    Olson RD, Brackett FS, Crickard RG. Oxygen tension measurement by a method of time selection using the static platinum electrode with alternating potential. J Gen Physiol 1949;32:681–703PubMedCrossRefGoogle Scholar
  37. 37.
    Tobias JM. Syringe oxygen cathode for measurement of oxygen tension in solution and in respiratory gases. Rev Sci Instrum 1949;20:519–523CrossRefGoogle Scholar
  38. 38.
    Müller OH. Polarographic study with a microelectrode past which an electrolyte is flowing. J Am Chem Soc 1947;69:2992–2997PubMedCrossRefGoogle Scholar
  39. 39.
    Morgan EH, Nahas GG. Investigation of polarometric method for oxygen tension in blood with rotating platinum electrode. Fed Proc 1950;9:91Google Scholar
  40. 40.
    Drenckhahn FO. Untersuchungen zur polarimetrischen Messung des Sauerstoffdruckes (PO2) im Blut mit der Platinelektrode. Naturwissenschaften 1951;38:455–462CrossRefGoogle Scholar
  41. 41.
    Clements JA, Moore JC. Method for continuous indication of oxygen tension in flowing blood. Am J Physiol 1952;171:713–714Google Scholar
  42. 42.
    Williams MH Jr. Alveolar-arterial oxygen tension differences in normal dogs. Am J Physiol 1956;173:77–109Google Scholar
  43. 43.
    Clark LC, Gollan F, Gupta VB. The oxygenation of blood by gas dispersion. Science 1950;111:85–87PubMedCrossRefGoogle Scholar
  44. 44.
    Clark LC Jr, Wolf R, Granger D, Taylor Z. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 1953;6:189–193PubMedGoogle Scholar
  45. 45.
    Clark LC Jr. Measurement of oxygen tension: a historical perspective. Crit Care Med 1981;9:960–692Google Scholar
  46. 46.
    Clark LC Jr. Monitor and control of blood and tissue O2 tensions. Trans Am Soc Artif Intern Organs 1956;2:41–48Google Scholar
  47. 47.
    Clark LC. Continuous recording of blood oxygen content. Surg Forum 1960;11:143–144PubMedGoogle Scholar
  48. 48.
    McArthur KT, Clark LC, Lyons C, Edwards S. Continuous recording of blood oxygen saturation in open-heart operations. Surgery 1962;51:121–126Google Scholar
  49. 49.
    Auer LM, Gallhofer B. Rhythmic activity of cat pial vessels in vivo. Eur Neurol 1981;20:448–468PubMedCrossRefGoogle Scholar
  50. 50.
    Severinghaus JW, Bradley AF. Electrodes for blood PO2 and PCO2 determination. J Appl Physiol 1958;13:515–520PubMedGoogle Scholar
  51. 51.
    Severinghaus JW. Recent developments in blood O2 and CO2 electrodes. In: Woolmer R, ed. A Symposium on pH and blood gas measurements. London: Churchill, 1959:126–142Google Scholar

Copyright information

© Little, Brown and Company, Inc. 1986

Authors and Affiliations

  • John W. Severinghaus
    • 1
  • Poul B. Astrup
    • 2
  1. 1.From the Department of Anesthesia and the Anesthesia Research CenterUniversity of California Medical CenterSan Francisco
  2. 2.Department of Clinical Chemistry, RigshospitalUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations