Advertisement

pure and applied geophysics

, Volume 115, Issue 1–2, pp 441–458 | Cite as

Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions

  • Thomas C. Hanks
Article

Abstract

A variety of geophysical observations suggests that the upper portion of the lithosphere, herein referred to as the elastic plate, has long-term material properties and frictional strength significantly greater than the lower lithosphere. If the average frictional stress along the non-ridge margin of the elastic plate is of the order of a kilobar, as suggested by the many observations of the frictional strength of rocks at mid-crustal conditions of pressure and temperature, the only viable mechanism for driving the motion of the elastic plate is a basal shear stress of several tens of bars. Kilobars of tectonic stress are then an ambient, steady condition of the earth's crust and uppermost mantle. The approximate equality of the basal shear stress and the average crustal earthquake stress drop, the localization of strain release for major plate margin earthquakes, and the rough equivalence of plate margin slip rates and gross plate motion rates suggest that the stress drops of major plate margin earthquakes are controlled by the elastic release of the basal shear stress in the vicinity of the plate margin, despite the existence of kilobars of tectonic stress existing across vertical planes parallel to the plate margin. If the stress differences available to be released at the time of faulting are distributed in a random, white fasbion with a mean-square value determined by the average earthquake stress drop, the frequency of occurrence of constant stress drop earthquakes will be proportional to reciprocal faulting area, in accordance with empirically known frequency of occurrence statistics.

Key words

Earthquake stress drops Plate tectonics Stress in lithosphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K. (1972),Earthquake mechanism, Tectonophysics13, 423–446.Google Scholar
  2. Andrews, D. J. (1972),Numerical simulation of sea-floor spreading, J. Geophys. Res.77, 6470–6481.Google Scholar
  3. Brace, W. F. (1972),Laboratory studies of stick-slip and their application to earthquakes, Tectonophysics14, 189–200.Google Scholar
  4. Brace, W. F., andByerlee, J. D. (1970),California earthquakes: why only shallow focus? Science168, 1573–1575.Google Scholar
  5. Brune, J. N. (1968),Seismic moment, seismicity, and rate of slip along major fault zones J. Geophys. Res.73, 777–784.Google Scholar
  6. Brune, J. N. (1970),Tectonic stress and the spectra of seismic shear waves, J. Geophys. Res.75, 4997–5009.Google Scholar
  7. Brune, J. N. (1971),Correction, J. Geophys. Res.76, 5002.Google Scholar
  8. Brune, J. N., Henyey, T. L. andRoy, R. F. (1969),Heat flow, stress, and rate of slip along the San Andreas fault, California, J. Geophys. Res.74, 3821–3827.Google Scholar
  9. Burdick, L. J. andMellman, G. R. (1976),Inversion of the body waves from the Borrego Mountain earthquake to the source mechanism, Bull. Seismol. Soc. Amer.66, 1485–1499.Google Scholar
  10. Byerly, P. andDe Noyer, J.,Energy in earthquakes as computed from geodetic observations inContributions in Geophysics in Honor of Beno Gutenberg (Pergamon Press, New York, 1958).Google Scholar
  11. Caldwell, J., Hixby, W. F., Karig, D. E. andTurcotte, D. L. (1976),On the applicability of a universal elastic trench profile, Earth Plan. Sci. Lett.31, 239–246.Google Scholar
  12. Carter, N. L. (1976),Steady state flow of rocks, Rev. Geophys. Space Phys.14, 301–360.Google Scholar
  13. Chinnery, M. A. (1961),The deformation of the ground around surface faults, Bull. Seismol. Soc. Amer.51, 355–372.Google Scholar
  14. Chinnery, M. A. (1964),The strength of the Earth's crust under horizontal shear stress. J. Geophys. Res.69, 2085–2089.Google Scholar
  15. Davies, G. F. andBrune, J. N. (1971),Regional and global fault slip rates from seismicity, Nature229, 101–107.Google Scholar
  16. Ellsworth, W. L., Campbell, R. H., Hill, D. P., Page, R. A., Alewine, R. W., Hanks, T. C., Heaton, T. H., Hileman, J. A., Kanamori, H., Minster, B. andWhitcomb, J. H. (1973),Point Mugu, Caltfornia, earthquake of 21 February 1973 and its aftershocks Science182, 1127–1129.Google Scholar
  17. Forsyth, D. W. (1977),The evolution of the upper mantle beneath mid-ocean ridges Tectonophysics, in press.Google Scholar
  18. Forsyth, D. andUyeda, S. (1975),On the relative importance of the driving forces of plate motion, Geophys. J. Roy. Astron. Soc.43, 163–200.Google Scholar
  19. Hanks, T. C. (1971),The Kuril trench-Hokkaido rise system: large shallow earthquakes and simple models of deformation, Geophys. J. Roy. Astron. Soc.23, 173–190.Google Scholar
  20. Hanks, T. C. (1974),The faulting mechanism of the San Fernando earthquake, J. Geophys. Res.79, 1215–1229.Google Scholar
  21. Hanks, T. C. andJohnson, D. A. (1976),Geophysical assessment of peak accelerations Bull. Seismol. Soc. Amer.66, 959–968.Google Scholar
  22. Hanks, T. C. andWyss, M. (1972),The use of body-wave spectra in the determination of seismic source parameters, Bull. Seismol. Soc. Amer.62, 561–590.Google Scholar
  23. Jeffreys, H.,The Earth (Cambridge University Press, Cambridge, 1959).Google Scholar
  24. Kanamori, H. andAnderson, D. L. (1975),Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Amer.65, 1073–1096.Google Scholar
  25. Kanamori, H. andPress, F. (1970),How thick is the lithosphere? Nature226, 330–331.Google Scholar
  26. Hasahara, K. (1987),The nature of seismic origins as inferred from seismological and geodetic observations (1), Bull. Earthquake Res. Inst. Tokyo Univ.,35, 475–532.Google Scholar
  27. Kirby, S. (1977),State of stress in the lithosphere: inferences from the flow laws of olivine, Pure appl. Phys.115, 245–258.Google Scholar
  28. Lachenbruch, A. H. andSass, J. H.,Thermo-mechanical aspects of the San Andreas fault system inProceedings of the Conference on Tectonic Problems of the San Andreas fault system (eds. R. L. Kovach and A. Nur) (Stanford University Publications, Stanford 1973), pp. 192–205.Google Scholar
  29. McKenzie, D. P. (1969),Some remarks on heat flow and gravity anomalies, J. Geophys. Res.72, 6261–6273.Google Scholar
  30. McKenzie, D. P. (1969),Speculations on the consequences and causes of plate motions, Geophys. J. Roy. Astron. Soc.18, 1–32.Google Scholar
  31. Molnar, P. andWyss, M. (1972),Moments, source dimensions and stress drops of shallow-focus earthquakes in the Tonga-Kermadec arc, Phys. Earth Planet. Interiors6, 263–278.Google Scholar
  32. Nakamura, K. andJacob, K. (1976),Volcanoes as indicators of tectonic stress orientation-Aleutians and Alaska (abs.), EOS57, 1006.Google Scholar
  33. Parsons, B. andMolnar, P. (1976),The origin of outer topographic rises associated with trenches Geophys. J. Roy. Astron. Soc.45, 707–712.Google Scholar
  34. Savage, J. C. andBurford, R. O. (1973),Geodetic determination of relative plate motion in central California, J. Geophys. Res.78, 832–845.Google Scholar
  35. Sclater, J. G. andFrancheteau, J. (1970),The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the earth, Geophys. J. Roy. Astron. Soc.20, 509–542.Google Scholar
  36. Solomon, S. C., Sleep, N. H. andRichardson, R. M. (1975),On the forces driving plate tectonics: inferences from absolute plate velocities and intraplate stress, Geophys. J. Roy. Astron. Soc.42, 769–801.Google Scholar
  37. Stesky, R. M. andBrace, W. F.,Estimation of frictional stress on the San Andreas fault from laboratory measurements inProceedings of the Conference on Tectonic Problems of the San Andreas fault system (eds. R. L. Kovach and A. Nur) (Stanford University Publications, Stanford, 1973), pp. 206–214.Google Scholar
  38. Thatcher, W. (1972),Regional variations of seismic source parameters in the northern Baja California area, J. Geophys. Res.77, 1549–1565.Google Scholar
  39. Thatcher, W. (1975),Strain accumulation and release mechanism of the 1906 San Francisco earthquake, J. Geophys. Res.80, 4862–4872.Google Scholar
  40. Thatcher, W. andHamilton, R. M. (1973),Aftershocks and source characteristics of the 1969 Coyote Mountain earthquake, San Jacinto fault zone, California, Bull. Seismol. Soc. Amer.63, 647–661.Google Scholar
  41. Thatcher, W. andHanks, T. C. (1973),Source parameters of southern California earthquakes, J. Geophys. Res.78, 8547–8576.Google Scholar
  42. Tucker, B. E. andBrune, J. N.,Seismograms, S-wave spectra, and source parameters for aftershocks of San Fernando earthquake inSan Fernando, California Earthquake of February 9, 1971, Vol. III (Geological and Geophysical Studies, 69–122, U.S. Dept. of Commerce, 1973).Google Scholar
  43. Watts, A. B. andTalwani, M. (1974),Gravity anomalies seaward of deep-sea trenches and their tectonic implications, Geophys. J. Roy. Astron. Soc.36, 57–90.Google Scholar
  44. Wyss, M. andHanks, T. C. (1972),The source parameters of the San Fernando earthquake inferred from teleseismic body waves, Bull. Seismol. Soc. Amer.62, 591–602.Google Scholar
  45. Wyss, M. andMolnar, P. (1972),Source parameters of intermediate and deep focus eurthquakes in the Tonga arc, Phys. Earth Planet. Interiors6, 279–292.Google Scholar
  46. Zoback, M. D. andByerlee, J. D. (1976)A note on the deformational behavior and permeability of crushed granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr.13, 291–294.Google Scholar

Copyright information

© Birkhäuser Verlag 1977

Authors and Affiliations

  • Thomas C. Hanks
    • 1
  1. 1.U.S. Geological SurveyMenlo ParkUSA

Personalised recommendations