pure and applied geophysics

, Volume 115, Issue 1–2, pp 317–331 | Cite as

Apparent stress and stress drop for intraplate earthquakes and tectonic stress in the plates

  • Randall M. Richardson
  • Sean C. Solomon


The magnitude of shear stress in the lithosphere is bounded from below by the apparent stress and stress drop during intraplate earthquakes. Apparent stresses and stress drops for a number of mid-plate earthquakes are calculated from the earthquake magnitude, SH wave amplitude spectra, and estimates of the length of the fault zone. Apparent stresses vary between 0.1 and 2 bars, ifm b is used as a measure of seismic energy, and stress drops lie between 2 and 70 bars. There is no systematic difference in either apparent stress or stress drop between these intraplate events and typical plate boundary earthquakes. These bounds on intraplate shear stresses are consistent with the inference from current models of plate tectonic driving forces that regional stress differences in the plates are typically on the order of 100 bars. The highest stress drops measured for midplate earthquakes under this model represent nearly total release of local tectonic stress.

Key words

Stress drop Intraplate stress Apparent stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahorner, L. (1975),Present-day stress field and seismotectonic block movements along major fault zones in central Europe, Tectonophys.29, 233–249.Google Scholar
  2. Aki, K. (1966),Generation and propagation of G waves from the Niigata earthquake of June 16, 1964, Part 2. Estimation of earthquake moment, released energy, and stress-strain drop from the G wave spectrum, Bull. Earthquake Res. Inst. Tokyo Univ.44, 73–88.Google Scholar
  3. Artyushkov, E. V. (1973),Stresses in the lithosphere caused by crustal thickness inhomogeneities, J. Geophys. Res.78, 7675–7708.Google Scholar
  4. Bhattacharya, B. (1975),Excitation and attenuation of Love waves in North America from the November 9, 1968 south central Illinois earthquake, J. Phys. Earth23, 173–187.Google Scholar
  5. Bird, G. P. (1976),Thermal and mechanical evolution of continental convergence zones: Zagros and Himalayas, Ph.D. Thesis, Mass. Inst. Technol., Cambridge, Mass. 423 pp.Google Scholar
  6. Brune, J. N., Henyey, T. L. andRoy, R. F. (1969),heat flow, stress, and rate of slip along the San Andreas fault, California. J. Geophys. Res.74, 3822–3827.Google Scholar
  7. Ellsworth, W. L. (1975),Bear Valley, California, earthquake sequence of February-March, 1972, Bull. Seismol. Soc. Am.65, 483–506.Google Scholar
  8. Engdahl, E. R. andSleep, N. H. (1976),Seismicity and stress beneath the central Aleutian arc (abstract), EOS, Trans. Amer. Geophys. Un.57, 329.Google Scholar
  9. Fairhead, J. D. andGirdler, R. W. (1971),The seismicity of Africa, Geophys. J. Roy. astro. Soc.24, 271–301.Google Scholar
  10. Fitch, T. J., Worthington, M. H. andEveringham, I. B. (1973),Mechanisms of Australian earthquakes and contemporary stresses in the Indian Ocean plate, Earth Planet. Sci. Lett.18, 345–356.Google Scholar
  11. Forsyth, D. W. (1973a),Compressive stress between two mid-ocean ridges, Nature243, 78–79.Google Scholar
  12. Forsyth, D. W. (1973b),Anisotropy and the structural evolution of the oceanic upper mantle, Ph.D. Thesis, Mass. Inst. Technol., Cambridge, 253 p.Google Scholar
  13. Forsyth, D. W. andUyeda, S. (1975),On the relative importance of driving forces of plate motion, Geophys. J. Roy. astro. Soc.43, 163–200.Google Scholar
  14. Frank, F. C. (1972),Plate tectonics, the analogy with glacier flow and isostasy, inFlow and Fracture of Rocks, Amer. Geophys. Un. Mon.16, 285–292.Google Scholar
  15. Geller, R. J. (1976),Scaling relations for earthquake source parameters and magnitude, Bull. Seismol. Soc. Am.66, 1501–1523.Google Scholar
  16. Gutenberg, B. andRichter, C. F. (1956),Earthquake magnitude, intensity, energy and acceleration, Bull. Seismol. Soc. Am.46, 105–145.Google Scholar
  17. Hagiwara, T. (1958),A note on the theory of the electromagnetic seismograph, Bull. Earthouake Res. Inst., Tokyo Univ.36, 139–164.Google Scholar
  18. Haimson, B. C. (1975),The state of stress in the earth's crust, Rev. Geophys. Space Phys.13, 350–352.Google Scholar
  19. Haimson, B. C. (1976),Crustal stress measurements through an ultra deep well in the Michigan basin (abstract), EOS, Trans. Amer. Geophys. Un.57, 326.Google Scholar
  20. Hales, A. L. (1969),Gravitational sliding and continental drift, Earth Planet. Sci. Lett.6, 31–34.Google Scholar
  21. Hales, A. L. andRoberts, J. L. (1970),Shear velocities in the lower mantle and the radius of the core, Bull. Seis. Soc. Am.60, 1427–1436.Google Scholar
  22. Hanks, T. C. andWyss, M. (1972),The use of body wave spectra in the determination of seismic source parameters, Bull. Seismol. Soc. Am.62, 561–589.Google Scholar
  23. Hashizume, M. (1973),Two earthquakes on Baffin Island and their tectonic implications, J. Geophys. Res.78, 6069–6081.Google Scholar
  24. Hashizume, M. (1974),Surface wave study of earthquakes near northwestern Hudson Bay, Canada, J. Geophys. Res.79, 5458–5468.Google Scholar
  25. Hirasawa, T. (1966),A least square method for the mechanism determination from S wave data; Part 1., Bull. Earthquake Res. Inst. Tokyo Univ.44, 901–918.Google Scholar
  26. Isacks, B. andMolnar, P. (1971),Distribution of stresses in the descending lithosphere from a global survey of focal-mechanism solutions of mantle earthquakes, Rev. Geophys. Space Phys.9, 103–174.Google Scholar
  27. Jacoby, W. B. (1970),Instability in the upper mantle and global plate movements, J. Geophys. Res.75, 5671–5680.Google Scholar
  28. Julian, B. R. andAnderson, D. L. (1968),Travel times, apparent velocities, and amplitudes of body waves, Bull. Seismol. Soc. Am.58, 339–366.Google Scholar
  29. Kanamori, H. andAnderson, D. L. (1975),Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am.65, 1073–1095.Google Scholar
  30. Keilis-Borok, V. I. (1960),Investigation of the mechanism of earthquakes, Sov. Res. Geophys. (English transl.)4, 29.Google Scholar
  31. Knopoff, L. (1958),Energy release in earthquakes, Geophys. J. Roy. astro. Soc.1, 44–52.Google Scholar
  32. Langston, C. A. (1976),A body wave inversion of the Koyna, India earthquake of December 10, 1967, and some implications for body wave focal mechanisms, J. Geophys. Res.81, 2517–2529.Google Scholar
  33. Maasha, N. andMolnar, P. (1972),Earthquake fault parameters and tectonics in Africa, J. Geophys. Res.77, 5731–5743.Google Scholar
  34. McKenzie, D. P. (1969),Speculations on the consequences and causes of plate motions, Geophys. J. Roy. astro. Soc.18, 1–32.Google Scholar
  35. Mendiguren, J. A. (1971),Focal mechanism of a shock in the middle of the Nazca plate, J. Geophys. Res.76, 3861–3879.Google Scholar
  36. Mitchell, B. J. (1973),Radiation and attenuation of Rayleigh waves from the southeastern Missouri earthquake of October 21, 1965, J. Geophys. Res.78, 886–899.Google Scholar
  37. Molnar, P. andSykes, L. R. (1969),Tectonics of the Caribbean and middle America regions from focal mechanisms and seismicity, Bull. Geol. Soc. Am.80, 1639–1684.Google Scholar
  38. Molnar, P. andWyss, M. (1972),Moments, source dimensions and stress drops of shallow-focus earthquakes in the Tonga-Kermadec arc, Phys. Earth Planet. Inter.6, 263–278.Google Scholar
  39. Ranalli, G. (1975),Geotectonic relevance of rock stress determinations, Tectonophys.29, 49–58.Google Scholar
  40. Richardson, R. M., Solomon, S. C. andSleep, N. H. (1976),Intraplate stress as an indicator of plate tectonic driving forces, J. Geophys. Res.81, 1847–1856.Google Scholar
  41. Sbar, M. L. andSykes, L. R. (1973),Contemporary compressive stress and seismicity in eastern North America: an example of intra-plate tectonics, Geol. Soc. Am. Bull.84, 1861–1882.Google Scholar
  42. Singh, D. D., Rastogi, B. K. andGupta H. K. (1975),Surface wave radiation pattern and source parameters of Koyna earthquake of December 10, 1967, Bull. Seismol. Soc. Am.65, 711–731.Google Scholar
  43. Smith, A. T. andToksöz, M. N. (1972),Stress distribution beneath island arcs, Geophys. J. Roy. astro. Soc.29, 289–318.Google Scholar
  44. Solomon S. C. andPaw U, K. T. (1975),Elevation of the olivine-spinel transition in subducted lithosphere: seismic evidence, Phys. Earth Planet. Interiors11, 97–108.Google Scholar
  45. Solomon, S. C. andSleep, N. H. (1974),Some simple physical models for absolute plate motions, J. Geophys. Res.79, 2557–2567.Google Scholar
  46. Solomon, S. C., Sleep, N. H. andRichardson, R. M. (1975),On the forces driving plate tectonics: inferences from absolute plate velocities and intraplate stress, Geophys. J. Roy. astro. Soc.42, 769–801.Google Scholar
  47. Solomon, S. C., Sleep, N. H. andRichardson, R. M. (1977a),Implications of absolute plate motions and intraplate stress for mantle rheology, Tectonophys.37, 219–231.Google Scholar
  48. Solomon, S. C., Sleep, N. H. andJurdy, D. M. (1977b),Mechanical models for absolute plate motions in the early Tertiary, J. Geophys. Res.82, 203–212.Google Scholar
  49. Stauder, W. andNuttli, O. W. (1970),Seismic studies; south central Illinois earthquake of November 9, 1968, Bull. Seismol. Soc. Am.60, 973–981.Google Scholar
  50. Stesky, R. M., Brace, W. F., Riley, D. K. andRobin, P.-Y. F. (1974),Friction in faulted rock at high temperature and pressure, Tectonophys.23, 177–203.Google Scholar
  51. Sykes, L. R. andSbar, M. L. (1973),Intraplate earthquakes lithospheric stresses and the driving mechanism of plate tectonics, Nature245, 298–302.Google Scholar
  52. Sykes, L. R. andSbar, M. L. (1974),Focal mechanism solutions of intraplate earthquakes and stresses in the lithosphere inGeodynamics of Iceland and the North Atlantic Area (ed. L. Kristjansson), 207–224.Google Scholar
  53. Toksöz, M. N., Sleep, N. H. andSmith, A. T. (1973),Evolution of the downgoing lithosphere and the mechanisms of deep focus earthquakes, Geophys. J. Roy. astro. Soc.35, 285–310.Google Scholar
  54. Tullis, T. E. andChapple, W. M. (1973),What makes the plates go (abstract), EOS, Trans. Amer. Geophys. Un.54, 468.Google Scholar
  55. Turcotte, D. L. andSchubert, G. C. (1971),Structure of the olivine-spinel phase boundary in the descending lithosphere, J. Geophys. Res.76, 7980–7987.Google Scholar
  56. Tsai, Y. B. andAki, K. (1969),Simultaneous determination of the seismic moment and attenuation of seismic surface waves, Bull. Seismol. Soc. Am.59, 275–287.Google Scholar
  57. Unger, J. D. andWard, P. L. (1974),Travel time delays and tectonic stress from a subcrustal Hawaiian earthquake (abstract), EOS, Trans. Amer. Geophys. Un.56, 1150.Google Scholar
  58. Wyss, M. (1970a),Stress estimates for South American shallow and deep earthquakes, J. Geophys. Res.75, 1529–1544.Google Scholar
  59. Wyss, M. (1970b),Apparent stresses of earthquakes on ridges compared to apparent stresses of earthquakes in trenches, Geophys. J. Roy. astro. Soc.19, 479–484.Google Scholar
  60. Wyss, M. andMolnar, P. (1972),Source parameters of intermediate and deep focus earthquakes in the Tonga arc, Phys. Earth Planet. Inter.6, 279–292.Google Scholar

Copyright information

© Birkhäuser Verlag 1977

Authors and Affiliations

  • Randall M. Richardson
    • 1
  • Sean C. Solomon
    • 1
  1. 1.Department of Earth and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations