Advertisement

Surgical and Radiologic Anatomy

, Volume 21, Issue 1, pp 59–64 | Cite as

Subacromial space width changes during abduction and rotation -a 3-D MR imaging study

  • H. Graichen
  • H. Bonel
  • T. Stammberger
  • K-H. Englmeier
  • M. Reiser
  • F. Eckstein
Radiologic Anatomy

Summary

The objectives of this study were to determine systematic changes of the normal subacromial space width during abduction and rotation, and to analyze the spatial relationship of the supraspinatus muscle with the acromion and clavicle. 12 healthy volunteers were imaged by an open MR scanner in 5 different positions of abduction and in 3 positions of rotation. After three dimensional (3D) reconstruction and 3D Euclidian distance transformation, the minimal spatial distances between the humerus and the acromion and the humerus and clavicle were computed. The minimal acromio-humeral distance decreased significantly from 30° of abduction (mean 7.0 mm±1.6 mm) to 120° (mean 3.9 mm;±1.8 mm; p<0.0001). At 30°, the minimal distance penetrated the supraspinatus, whereas at 120° it was always located lateral to the supraspinatus tendon. At 90° with internal rotation (7.6 mm,±2.3 mm) the minimal acromio-humeral distance was larger than in neutral rotation (5.4 mm,±2.3 mm) or external rotation (4.4 mm,±2.2 mm; p<0.05), but it penetrated the supraspinatus tendon at its most vulnerable part, reaching the acromion at its anterior inferior border. We conclude that the subacromial space width changes during abduction and rotation and that the supraspinatus is in closest contact to the anterior inferior border of the acromion in 90° of abduction with 45° internal rotation. These values obtained in volunteers can be used as a basis for further investigations in patients with the impingement syndrome.

Key words

Shoulder Impingement syndrome Subacromial space MR imaging 3D reconstruction 

Les modifications de la hauteur de l'espace sub-acromial au cours des mouvements d'abduction et de rotation — Etude en imagerie par résonance magnétique nucléaire tridimensionnelle

Résumé

Les objectifs de ce travail étaient de déterminer les modifications de la hauteur de l'espace sub-acromial normal pendant l'abduction et la rotation, et d'analyser les rapports dans l'espace du m. supra-épineux avec l'acromion et la clavicule. L'étude a été réalisée sur une IRM ouverte chez 12 volontaires sains dans 5 positions différentes d'abduction et 3 de rotation. Après reconstruction tridimensionnelle (3D) et mesure euclidienne de distance dans l'espace, les distances minimales entre l'humérus et l'acromion d'une part et la clavicule d'autre part ont fait l'objet d'un traitement informatique. La distance acromiohumérale minimale diminuait de façon significative à partir de 30° (moyenne 7.0 mm;+1.6 mm.) jusqu'à 120° (moyenne 3.9 mm;+1.8 mm; p<0.0001) d'abduction. A 30°, le vecteur de la distance minimale traversait le m. supra-épineux alors qu'à 120° et au-delà, il était en situation latérale par rapport à son tendon chez tous les volontaires. A 90°, la distance acromio-humérale minimale était plus grande en rotation interne (7.6 mm,+2.3 mm) qu'en rotation neutre (5.4 mm,+2.3 mm) ou externe (4.4 mm,+2.2 mm; p<0.05), mais son vecteur traversait le tendon des m. supra-épineux dans sa partie la plus vulnérable et atteignait l'acromion à son bord antérieur et inférieur. Ainsi, la hauteur de l'espace subacromial se modifie pendant l'abduction et la rotation et le m. supra-épineux vient au contact étroit du bord antérieur et inférieur de l'acromion à 90° d'abduction avec 45° de rotation interne. Ces chiffres obtenus chez des volontaires sains constituent des valeurs de références pour des travaux ultérieurs chez des patients souffrant d'un conflit sub-acromial.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aoki M, Ishii S, Usui M (1986) The slope of the acromion and rotator cuff impingement. Orthop Trans 10: 228Google Scholar
  2. 2.
    Banas MP, Miller RJ, Totterman S (1995) Relationship between the lateral acromion angle and rotator cuff disease. J Shoulder Elbow Surg 4: 454–461PubMedGoogle Scholar
  3. 3.
    Bigliani LU, Ticker JB, Flatow EL, Soslowsky LJ, Mow VC (1991) The relationship of acromial architecture to rotator cuff disease. Clin Sports Med. 10: 823–838PubMedGoogle Scholar
  4. 4.
    Burk DL, Karasick D, Kurtz AB (1989) Rotator cuff tears: prospective comparison of MR imaging with arthrography, sonography, and surgery. AJR 153: 87–92PubMedGoogle Scholar
  5. 5.
    Burns WC II, Whipple TL (1993) Anatomic relationships in the shoulder impingement syndrome. Clin Orthop 294: 96–102PubMedGoogle Scholar
  6. 6.
    Deutsch A, Altchek DW, Schwartz E, Otis JC, Warren RF (1996) Radiologic measurement of superior migration of the humeral head in impingement syndrome. J Shoulder Elbow Surg 5: 186–193PubMedGoogle Scholar
  7. 7.
    Flatow EL, Soslowsky LJ, Ticker JB, Pawluk RJ, Heppler M, Ark J, Mow VC, Bigliani LU (1994) Excursion of the rotator cuff under the acromion. Am J Sports Med 22: 779–788PubMedGoogle Scholar
  8. 8.
    Gagey N, Ravaud E, Lassau JP (1993) Anatomy of the acromial arch: correlation of anatomy and magnetic resonance imaging. Surg Radiol Anat 15: 63–70PubMedGoogle Scholar
  9. 9.
    Golding FC (1962) The shoulder: The forgotten joint. Br J Radiol 35: 149–158PubMedGoogle Scholar
  10. 10.
    Graichen H, Bonel H, Stammberger T, Heuck A, Englmeier KH, Reiser M, Eckstein F (1998) A technique for determining the spatial relationship between the rotator cuff and the subacromial space in arm abduction using MRI and 3D image processing. Magn Res Med 40: 640–643Google Scholar
  11. 11.
    Hawkins RJ, Hobeika PE (1983) Physical examination of the shoulder. Orthopedics 6: 59–64Google Scholar
  12. 12.
    Hee-Jong Y, Park KH (1992) Surface modelling method by polygonal primitives for visualizing three-dimensional data. Visual Computer 8: 246–259Google Scholar
  13. 13.
    Ianotti JP, MB Zlatkin, JL Esterai, HY Kressel, MK Dalinka, KP Spindler (1991) Magnetic resonance imaging of the shoulder: Sensitivity, specificity, and predictive value. J Bone Joint Surg 73A: 17–29Google Scholar
  14. 14.
    Jobe FW, Jobe JM (1983) Painful athletic injuries of the shoulder. Clin Orthop 173: 117–124PubMedGoogle Scholar
  15. 15.
    Kessel L, Watson M (1977) The painful arc syndrome. Clinical classification as a guide to management. J Bone Joint Surg (Br) 59-B: 166–172Google Scholar
  16. 16.
    Lochmüller EM, Maier U, Anetzberger H, Habermayer P, Müller-Gerbl M (1997) Determination of subacromial space width and inferior acromial mineralization by 3D CT technique and preliminary data from patients with unilateral supraspinatus outlet syndrome. Surg Radiol Anat 19: 329–337PubMedGoogle Scholar
  17. 17.
    Neer CS II (1972) Anterior acromioplasty for the chronic impingement syndrome in the shoulder. A preliminary report. J Bone Joint Surg 54A: 41–50Google Scholar
  18. 18.
    Neer CS II (1983) Impingement lesions. Clin Orthop 173: 70–77PubMedGoogle Scholar
  19. 19.
    Petersson CJ, Redlund-Johnell I (1984) The subacromial space in normal shoulder radiographs. Acta Orthop Scand 55: 57–58PubMedGoogle Scholar
  20. 20.
    Rafii M, Firooznia H, Sherman OH, Minkoff J, Golimbu C, Gidumal R, Schinella R, Zaslav K (1990) Rotator cuff lesions: Signal patterns at MR imaging. Radiology 177: 817–823PubMedGoogle Scholar
  21. 21.
    Raya SP, Udupa JK (1990) Shape-based interpolation of multidimensional objects. IEEE Transactions on Medical Imaging 9: 32–42Google Scholar
  22. 22.
    Seeger LL, Gold RH, Bassett LW (1988) Shoulder impingement syndrome: MR findings in 53 shoulders. AJR 150: 343–347PubMedGoogle Scholar
  23. 23.
    Sherman OH (1997) MR imaging of impingement and rotator cuff disorders. Magn Reson Imaging Clin N Am 5: 721–734PubMedGoogle Scholar
  24. 24.
    Cotton RE, Rideout DR (1964) Tears of the humeral rotator cuff: A radiological and pathological necropsy survey. J Bone Joint Surg 64B: 314–328Google Scholar
  25. 24a.
    Sperner G (1995) The influence of the subacromial space on the impingement syndrome. Unfalchirurg 98: 309–319Google Scholar
  26. 25.
    Stammberger T, Eckstein F, Englmeier KH, Reiser M (1998) Determination of 3D cartilage thickness data from MR imaging — computational method and reproducibility in the living. MRM (in press)Google Scholar
  27. 26.
    Weiner DS, Macnab I (1970) Superior migration of the humeral head. J Bone Joint Surg 52B: 524–527Google Scholar
  28. 27.
    Wülker N, Wirth CJ, Plitz W, Roetman B (1995) A dynamic shoulder model: Reliability testing and muscle force study. J Biomechanics 28: 489–499Google Scholar
  29. 28.
    Wülker N, Plitz W, Roetman B, Rössig S (1995) Biomechanical investigation of the impingement syndrome at the shoulder. Z Orthop 133: 61–66PubMedGoogle Scholar
  30. 29.
    Zlatkin, MB, Ianotti JP, Roberts MC, Esterhai JL, Dalinka MK, Kressel HY, Schwartz JS, Lenkinski RE (1989) Rotator cuff tears: Diagnostic performance of MR imaging. Radiology 172: 223–229PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • H. Graichen
    • 1
  • H. Bonel
    • 2
  • T. Stammberger
    • 3
  • K-H. Englmeier
    • 3
  • M. Reiser
    • 2
  • F. Eckstein
    • 1
  1. 1.Anatomische Anstalt, Ludwig Maximilians Universität MünchenMünchenGermany
  2. 2.Institut für Radiologische Diagnostik, Klinikum GroßhadernMünchenGermany
  3. 3.Institut für Medizinische Informatik und Systemforschung, GSF Forschungszentrum NeuherbergOberschleißheimGermany

Personalised recommendations