, Volume 112, Issue 3, pp 143–153

The compass depressors ofParacentrotus lividus (Echinodermata, Echinoida): ultrastructural and mechanical aspects of their variable tensility and contractility

  • I. C. Wilkie
  • Candia Carnevali
  • F. Bonasoro


The compass depressors are bands of soft tissue which connect the compass ossicles of the echinoid lantern to the inner edge of the test. They are essentially ligaments with on one side a thin layer of muscle cells. The ligamentous component consists mainly of a parallel array of collagen fibrils with interspersed 12 nm microfibrils. The most notable cellular constituents are granule-containing cell bodies and their processes which resemble the juxtaligamental cells that have been found in all echinoderm mutable collagenous tissues and which may control the tensility of these tissues. The muscle cells occupy about 8% of the total cross-sectional area of the compass depressor and are located in a richly innervated pseudostratified myoepithelium. When subjected to constant low loads in creep tests the compass depressor stretches to a fixed length beyond which there is no further extension. The length at this creep limit coincides with the maximum length to which the compass depressor is stretched by natural movements of the intact lantern. Stress-strain tests show that treatment with 1 mM acetylcholine or 100 mM K+ ions can increase reversibly the stiffness of the compass depressor to an extent that cannot be due to contraction of the myoepithelium, suggesting that the mechanical properties of the ligament are under physiological control. Tension-length data on the myoepithelium suggest that it generates a maximum active tension when the compass depressor is stretched to the creep limit. The implications of these results for the function of the compass depressors are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrietti F, Candia Carnevali MD, Wilkie IC, Lanzavecchia G, Melone G, Celentano FC (1990) Mechanical analysis of the sea-urchin lantern: the overall system inParacentrotus lividus. J Zool Lond 220:345–366Google Scholar
  2. Bachmann S, Goldschmid A (1978) Fine structure of the axial complex ofSphaerechinus granularis (Lam.) (Echinodermata: Echinoidea). Cell Tissue Res 193:107–123Google Scholar
  3. Candia Carnevali MD, Wilkie IC (1992) Gli straordinari tessuti connettivi degli echinodermi 286:58–70Google Scholar
  4. Candia Carnevali MD, Andrietti F, Lanzavecchia G, Melone G, Celentano FC (1988) Aristotle's lantern in the regular sea-urchinParacentrotus lividus. II. Biochemical approach to the interpretation of movement. In: Burke RD, Mladenov PV, Lambert P, Parsley RL (eds) Echinoderm biology. Balkema, Rotterdam, pp 663–672Google Scholar
  5. Candia Carnevali MD, Bonasoro F, Andrietti F, Melone G, Wilkie IC (1990) Functional morphology of the peristomial membrane of regular sea-urchins: general organization and mechanical properties inParacentrotus lividus. In: De Ridder C, Dubois P, LaHaye M, Jangoux M (eds) Echinoderm research. Balkema, Rotterdam, pp 207–216Google Scholar
  6. Candia Carnevali MD, Bonasoro F, Melone G (1991) Microstructural and mechanical design in the lantern ossicles of the regular sea-urchinParacentrotus lividus: a scanning electron microscope study. Boll Zool 58:1–42Google Scholar
  7. Chadwick HC (1900) Echinus. Liverpool Marine Biology Committee Memoirs, Number 3Google Scholar
  8. Cobb JLS (1985) The motor innervation of the oral plate ligament in the brittlestarOphiura ophiura (L.). Cell Tissue Res 242:685–688Google Scholar
  9. Diab M, Gilly WF (1984) Mechanical properties and control of non-muscular catch in spine ligaments of the sea urchin,Strongylocentrotus franciscanus. J Exp Biol 111: 155–170Google Scholar
  10. Grimmelikhuijzen CJP, Graff D, Groeger A, McFarlane ID (1987) Neuropeptides in invertebrates. In: Ali MA (ed) Nervous systems in invertebrates. Plenum Press, New York, pp 105–132Google Scholar
  11. Hidaka M, Takahashi K (1983) Fine structure and mechanical properties of the catch apparatus of the sea urchin spine, a collagenous connective tissue with muscle-like holding capacity. J Exp Biol 103:1–14Google Scholar
  12. Hyman LH (1955) The Invertebrates, vol IV. Echinodermata. McGraw-Hill, New YorkGoogle Scholar
  13. Keene DR, Maddox BK, Kuo H, Sakai LY, Glanville RW (1991) Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. J Histochem Cytochem 39:441–449Google Scholar
  14. Lanzavecchia G, Candia Carnevali MD, Melone G, Celentano FC, Andrietti F (1988) Aristotle's lantern in the regular sea urchinParacentrotus lividus I. Functional morphology and significance of bones, muscles and ligaments. In: Burke RD, Mladenov PV, Lambert P, Parsley RL (eds) Echinoderm biology. Balkema, Rotterdam, pp 649–662Google Scholar
  15. Märkel K (1979) Structure and growth of the cidaroid socket-joint lantern of Aristotle compared to the hinge-joint lanterns of non-cidaroid regular echinoids (Echinodermata, Echinoidea). Zoomorphology 94:1–32Google Scholar
  16. Märkel K, Röser U, Stauber M (1990) The interpyramidal muscle of Aristotle's lantern: its myoepithelial structure and growth (Echinodermata, Echinoida). Zoomorphology 109:251–262Google Scholar
  17. Morales M, Del Castillo J, Smith DS (1989) Acetylcholine sensitivity of the spine-test articular capsule of the sea-urchinEucidaris tribuloides Comp Biochem Physiol 94C: 547–554Google Scholar
  18. Motokawa T (1983) Mechanical properties and structure of the spine-joint central ligament of the sea-urchin,Diadema setosum (Echinodermata, Echinoidea). J Zool Lond 201:223–235Google Scholar
  19. Motokawa T (1984) Connective tissue catch in echinoderms. Biol Rev 59:255–270Google Scholar
  20. Nässel DR (1987) Neuroactive substances in the insect CNS. In: Ali MA (ed) Nervous systems in invertebrates. Plenum Press, New York, pp 171–212Google Scholar
  21. Nichols D (1969) Echinoderms. Hutchinson, LondonGoogle Scholar
  22. Oxlund H, Manschot A, Viidik A (1988) The role of elastin in the mechanical properties of skin. J Biomechanics 21:213–218Google Scholar
  23. Rieger RM, Lombardi J (1987) Ultrastructure of coelomic lining in echinoderm podia: significance for concepts in the evolution of muscle and peritoneal cells. Zoomorphology 107:191–208Google Scholar
  24. Saita A (1969) La morfologia ultrastrutturale dei muscoli della “Lanterna di Aristotele” di alcuni echinoidi. Istituto Lombardo (Rend Sc) B 103:297–313Google Scholar
  25. Shadwick RE, Pollock CM, Stricker SA (1990) Structure and biomechanical properties of crustacean blood vessies. Physiol Zool 63:90–101Google Scholar
  26. Smith AB (1984) Echinoid Palaeobiology. Allen and Unwin, LondonGoogle Scholar
  27. Stauber M, Märkel K (1988) Comparative morphology of muscleskeleton attachments in the Echinodermata. Zoomorphology 108:137–148Google Scholar
  28. Takahashi K (1967) The catch apparatus of the sea-urchin spine. II. Responses to stimuli. J Fac Sci Univ Tokyo, Sect 4, 11:121–130Google Scholar
  29. Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Edward Arnold, LondonGoogle Scholar
  30. Walker CW (1979) Ultrastructure of the somatic portion of the gonads in asteroids, with emphasis on flagellated-collar cells and nutrient transport. J Morphol 162:127–162Google Scholar
  31. Watabe S, Hartshorne DJ (1990) Paramyosin and the catch mechanism. Comp Biochem Physiol 96B: 639–646Google Scholar
  32. Welsch U, Heinzeller T, Cobb JLS (1989) Histochemical and fine-structural observations on the nervous tissue ofAntedon bifida andDecametra spec. (Echinodermata:Crinoidea). Biomed Res 10 (Supplement 3): 145–154Google Scholar
  33. Wilkie IC (1979) The juxtaligamental cells ofOphiocomina nigra (Abildgaard) (Echinodermata: Ophiuroidea) and their possible role in mechano-effector function of collagenous tissue. Cell Tissue Res 197:515–530Google Scholar
  34. Wilkie IC (1984) Variable tensility in echinoderm collagenous tissues: a review. Mar Behav Physiol 11:1–34Google Scholar
  35. Wilkie IC (1992) Variable tensility of the oral arm plate ligaments of the brittlestarOphiura ophiura L. (Echinodermata : Ophiuroidea). J Zool Lond (in press)Google Scholar
  36. Wilkie IC, Emson RH (1988) Mutable collagenous tissues and their significance for echinoderm palaeontology and phylogeny. In: Paul CRC, Smith AB (eds) Echinoderm phylogeny and evolutionary biology, Clarendon Press, Oxford, pp 311–330Google Scholar
  37. Wilkie IC, Candia Carnevali MD, Bonasoro F (1992) Structure and mechanical behaviour of the compass depressors ofParacentrotus lividus (Lamarck) (Echinodermata: Echinoidea). In: Canicatti C, Scalera-Liaci L (eds) Echinoderm research 1991. Balkema, Rotterdam, pp 99–105Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • I. C. Wilkie
    • 1
  • Candia Carnevali
    • 2
  • F. Bonasoro
    • 2
  1. 1.Department of Biological SciencesGlasgow PolytechnicGlasgowScotland, UK
  2. 2.Dipartimento di Biologia “Luigi Gorini”Università degli Studi di MilanoMilanoItaly

Personalised recommendations