Advertisement

Zoomorphology

, Volume 112, Issue 1, pp 17–26 | Cite as

A new glandular sensory organ inCatanema sp. (Nematoda, Stilbonematinae)

  • Monika Nebelsick
  • Michael Blumer
  • Rudolf Novak
  • Jörg Ott
Article

Summary

A new multicellular glandular sensory organ is described forCatanema sp. (Nematoda, Stilbonematinae). The organs terminate in setae and are distributed in six longitudinal rows along the body. Two types of glandular cells (type A and type B), one monociliary sensory cell and one undifferentiated epidermal cell are combined in the basiepidermal organ. A comparison of epidermal glands as well as sensory organs in Nematoda is made. A causal relationship between the development of such complex, large and numerous glandular sensory organs and the occurrence of species-specific, symbiotic epibacteria inCatanema sp. seems probable, although there is no simple correlation between the distribution of these organs and epibacteria. A mucous cover over the bacterial layer, released by the glandular sensory organs, may create a microenvironment for the interaction between epibionts and host.

Keywords

Developmental Biology Causal Relationship Epidermal Cell Sensory Organ Simple Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations (used in figures)

a

amphid

A1–A4

type 1–4 granules of type A gland cell

an

annuli

b

bacteria

B1–B3

type 1–3 granules of type B gland cell

bl

basal lamina

bp

basal part of seta

bz

basal zone of cuticle

c

cuticle

ca

canal

cg

caudal gland

ci

cilium

cz

cortical zone of cuticle

d

dictyosomes

e

epidermis

e co

extracellular coat

em

extracellular matrix

ep

epicuticle

f

filaments

gcA

type 1 gland cell

gcB

type 2 gland cell

i lp

inner labial papillae

m

mitochondrion

me

membranes of type 2 gland cell

mo

mouth opening

mz

median zone of cuticle

n

nucleus

nu

nucleolus

p

process

pv

primary vesicle of type A gland cell

r

ribosomes

s

seta

sc

sensory cell

sp

secretory product

tj

tight junction

tp

terminal part of seta

uc

undifferentiated epidermal cell

va

vacuoles or vesicles of epidermal cells

ve

vesicles of sensory cell

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bird AF (1971) The structure of nematodes. Academic Press, New York London, 318 ppGoogle Scholar
  2. Bird AF (1984) Nematoda. In: Bereiter-Hahn J, Matoltsy AG, Sylvia Richards K (eds) Biology of the integument. 1. Invertebrates. Springer, Berlin Heidelberg, pp 212–233Google Scholar
  3. Bütschli O (1874) Zur Kenntnis der freilebenden Nematoden, insbesondere der des Kieler Hafens. Abh Senckenb Naturforsch Ges 9:1Google Scholar
  4. Chitwood BG, Chitwood MB (1950) Introduction to nematology. University Park Press, Baltimore London Tokyo, 213 ppGoogle Scholar
  5. Cobb NA (1920) One hundred new nemas. Contr Sci Nematol 9:217–343Google Scholar
  6. Coomans A (1979a) A proposal for a more precise terminology of the body regions in the nematode. Ann Soc R Zool Belg 108/1–2:115–117Google Scholar
  7. Coomans A (1979b) The anterior sensilla of nematodes. Rev Nématol 2/2:259–283Google Scholar
  8. Coomans A, De Griesse A (1981) Sensory structures. In: Zuckerman BM, Rohde RA (eds) Plant parasitic nematodes. Academic Press, New York London, pp 127–174Google Scholar
  9. Croll NA, Smith JM (1974) Nematode setae as mechanoreceptors. Nematologica 20:291–296Google Scholar
  10. De Conick LA (1965) Classe des Nematodes —Systématique des Nématodes et sous-classe des Adenophorea. In: Grasse: Traité de Zoologie 4/2:586–681Google Scholar
  11. Gerlach SA (1953) Die biozönotische Gliederung der Nematodenfauna an den deutschen Küsten. Z Morphol Ökol Tiere 41:411–512Google Scholar
  12. Hayat MA (1986) Basic techniques for electron microscopy. Academic Press, Orlando San Diego New York, 411 ppGoogle Scholar
  13. Hopper BE, Cefalu RC (1973) Free-living marine nematodes from Biscayne Bay, Florida V. Stilbonematinae: Contributions to the taxonomy and morphology of the genusEubostrichus Greeff and related genera. Trans Am Microsc Soc 92/4:578–591Google Scholar
  14. Inglis WG (1967) Interstitial nematodes from St. Vincent's Bay New Caledonia. Editions de la Fondation Singer-Polignac, pp 29–74Google Scholar
  15. Kreis H (1934) Oncholaiminae Filipjev 1916. Eine monographische Studie. Capita Zool 4/5:1–271Google Scholar
  16. Lee DL (1977) The nematode epidermis and collagenous cuticle, its formation and ecdysis. Symp Zool Soc Lond 39:145–170Google Scholar
  17. Lippens PL (1974) Ultrastructure of a marine nematode,Chromadorina germanica (Buetschli, 1874) II. Cytology of lateral epidermal glands and associated neurocytes. Z Morphol Tiere 79:283–294Google Scholar
  18. Lorenzen S (1977) Haftborsten bei dem NematodenHaptotricoma arenaria gen. n.; sp. n. (Desmoscolecidae) aus sublitoralem Sand bei Helgoland. Veröff Inst Meeresforsch Bremerhaven 16:117–124Google Scholar
  19. Lorenzen S (1981) Entwurf eines phylogenetischen Systems der freilebenden Nematoden. Veröff Inst Meeresforsch Bremerhaven Suppl 7:1–472Google Scholar
  20. Maggenti AR (1964) Morphology of somatic setae:Thoracostoma californicum (Nemata: Enoplidae). Proc Helminthol Soc Wash 31/2:159–166Google Scholar
  21. Maggenti A (1981) General nematology. Springer, New York Heidelberg Berlin, 372 ppGoogle Scholar
  22. McLaren DL (1976a) Nematode sense organs. Adv Parasitol 14:195–265Google Scholar
  23. McLaren DL (1976b) Sense organs and their secretion. In: Croll NA (ed) The organization of nematodes. Academic Press, London New York, pp 139–161Google Scholar
  24. Nicholas WL, Goodchild DJ, Stewart A (1987) The mineral composition of intracellular inclusions in nematodes from thiobiotic mangrove mud-flats. Nematologica 33:167–179Google Scholar
  25. Nuß B (1984) Ultrastrukturelle und ökophysiologische Untersuchungen an kristalloiden Einschlüssen der Muskeln eines sulfidtoleranten limnischen Nematoden (Trobrilus gracilis). Veröff Inst Meeresforsch Bremerhaven 20:3–15Google Scholar
  26. Nuß B, Trimkowski V (1984) Physikalische Mikroanalysen an kristalloiden Einschlüssen beiTrobrilus gracilis (Nematoda, Enoplida). Veröff Inst Meeresforsch Bremerhaven 20:17–27Google Scholar
  27. Ott JA, Novak R (1989) Living at an interface: Meiofauna at the oxygen-sulfide boundery of marine sediments. In:Ryland JS, Tyler PA (eds) Reproduction, genetics and distribution of marine organisms. Olsen & Olsen, Fredensborg, pp 415–422Google Scholar
  28. Schiemer F, Novak R, Ott J (1990) Metabolic studies on thiobiotic free-living nematodes and their symbiontic microorganisms. Marine Biology 106:129–137Google Scholar
  29. Storch V, Welsch U (1972) The ultrastructure of epidermal mucous cells in marine invertebrates (Nemertini, Polychaeta, Prosobranchia, Opistobranchia). Marine Biology 13:167–175Google Scholar
  30. Tyler S (1979) Distinctive features of cilia in metazoans and their significance for systematics. Tissue Cell 11/3:385–400Google Scholar
  31. Van de Velde MC, Coomans A (1989) A putative new hydrostatic skeletal function for the epidermis in monhysterids (Nematoda). Tissue Cell 21/4:525–533Google Scholar
  32. Wright KA (1980) Nematode sense organs. In: Zuckerman BM (ed) Nematodes as biological model systems, vol II Academic Press, New York, pp 237–295Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Monika Nebelsick
    • 1
  • Michael Blumer
    • 1
  • Rudolf Novak
    • 1
  • Jörg Ott
    • 1
  1. 1.Institut für Zoologie, Abteilung für Meeresbiologie und UltrastrukturforschungUniversität WienWienAustria

Personalised recommendations