, Volume 25, Issue 5, pp 318–334 | Cite as

Enzyme des Thymidin- und Thymidylat-Stoffwechsels in normalen und pathologischen Zellen des Blutes und des Knochenmarks

  • Sigrid Schollenberger
  • Dorothea Taureck
  • Wolfgang Wilmanns


Der Stoffwechsel von14C-Thymidin und14C-Thymidinmonophosphat in normalen und leukämischen Zellen des Blutes und des Knochenmarks wurde mit Hilfe der Dünnschichtchromatographie untersucht.
  1. 1.

    Thymidin kann durch die Thymidin-Kinase zu Thymidinmonophosphat phosphoryliert oder durch die Thymidin-Phosphorylase zu Thymin abgebaut werden. Thymidinmonophosphat wird einerseits durch Kinasen zu Thymidindi- und triphosphat phosphoryliert, andererseits kann es durch die Thymidylat-Phosphatase zu Thymidin und Phosphat gespalten werden. Geschwindigkeitsbegrenzendes Enzym der vom Thymidin zum Thymidintriphosphat führenden Phosphorylierungsreaktionen ist die Thymidin-Kinase.

  2. 2.

    In reifen peripheren Leukozyten und Lymphozyten bei chronischer Lymphadenose sind die Aktivitäten der anabolen Enzyme Thymidin-und Thymidinmonophosphat-Kinase relativ niedrig, die der katabolen Enzyme Thymidin-Phosphorylase und Thymidylat-Phosphatase relativ hoch. Umgekehrt sind die Aktivitäten der Kinasen in Knochenmarkzellen und peripheren Zellen bei akuten Leukämien und chronischer Myelose sowie in den mononukleären Zellen bei infektiöser Mononukleose im akuten Krankheitsverlauf erhöht, die Aktivitäten der abbauenden Enzyme erniedrigt. Dabei bestehen nur geringe quantitative Unterschiede zwischen normalen Knochenmarkzellen und leukämischen Zellen. Die Wirksamkeit einer zytostatischen Behandlung bei akuten Leukämien zeigt sich an Aktivitätserniedrigungen der Thymidin- und Thymidylat-Kinasen und Aktivitätserhöhungen der Thymidin-Phosphorylase sowie der Thymidylat-Phosphatase.



The metabolism of14C-thymidine and14C-thymidine monophosphate in normal and leukemic cells of the blood and of the bone marrow was studied by means of thin layer chromatography.
  1. 1.

    Thymidine can be phosphorylated to thymidine monophosphate by the thymidine kinase or removed to thymine by the thymidine phosphorylase. Thymidine monophosphate on the one hand is phosphorylated to thymidine di-and triphosphate, on the other hand is split to thymidine and phosphate by the thymidylate phosphatase. The rate limiting enzyme of the phosphorylation of thymidine to thymidine triphosphate is the thymidine kinase.

  2. 2.

    In mature peripheral leukocytes and lymphocytes of chronic lymphatic leukaemia the activities of the anabolic enzymes thymidine and thymidine monophosphate kinase are relatively low, the activities of the catabolic enzymes thymidine phosphorylase and thymidine phosphatase are relatively high. Contrary results are found in bone marrow and peripheral cells of acute and chronic leukaemias as well as in mononuclear cells of infectious mononucleosis in the acute phase of the disease. There are only low quantitative differences between normal bone marrow and leukemic cells. The efficiency of a treatment with cytocidal agents in acute leukaemias is acknowledged by decrease of the activities of the thymidine and thymidylate kinase and increase of the thymidine phosphorylase and thymidine phosphatase.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bianchi, P. A., J. A. V. Butler, A. R. Grathorn and K. V. Shooter: The Thymidine-Phosphorylating Kinases. Biochim. Biophys. Acta48, 213–214 (1961) und53, 123–131 (1961).Google Scholar
  2. 2.
    Bianchi, P. A.: Thymidine Phosphorylation and Deoxyribonucleic Acid Synthesis in Human Leukaemic Cells. Biochim. Biophys. Acta55, 547–549 (1962).Google Scholar
  3. 3.
    Blakley, R. L.: The Biosynthesis of Thymidylic Acid IV: Further Studies on Thymidylate Synthetase. J. Biol. Chem.238, 2113–2118 (1963).Google Scholar
  4. 4.
    Blakley, R. L., B. v. R. Ramasastri and B. M. McDougall: The Biosynthesis of Thymidylic Acid V: Hydrogen Isotope Studies with Dihydrofolic Reductase and Thymidylate Synthetase. J. Biol. Chem.238, 3075–3079 (1963).Google Scholar
  5. 5.
    Bock, H. E., K. Wilms und W. Wilmanns: Infektiöse Mononukleose. Dtsch. Med. Wschr.14, 748–753 (1970).Google Scholar
  6. 6.
    Breitman, T. R., S. Perry and R. A. Cooper: Pyrimidine Metabolism in Human Leukozytes III: The Utilization of Thymine for DNA-Synthesis by Leukemic Leukocytes. Canc. Res.26, 2282–2285 (1966).Google Scholar
  7. 7.
    Bukovsky, J. and J. S. Roth: Studies on Thymidylate Phosphatase, Thymidine Kinase and Thymidylate Kinase Activities in some Transplantable Rat Hepatomas. Advances in Enzyme Regulation2, 317–382 (1964).Google Scholar
  8. 8.
    Cooper, R. A. and J. D. Milton: The Incorporation and Degradation of Pyrimidine DNA Precursors by Human Leukocytes. Brit. J. Canc.18, 701–713 (1964).Google Scholar
  9. 9.
    Eker, P.: Properties and Assay of Thymine Deoxyribonucleotide Phosphatase of Mammalian Cells in Tissue Culture. J. Biol. Chem.240, 419–422 (1965).Google Scholar
  10. 10.
    Eker, P.: Activities of Thymidine Kinase and Thymine Deoxyribonucleotide Phosphatase during Growth of Cells in Tissue Culture. J. Biol. Chem.240, 2607–2611 (1965).Google Scholar
  11. 11.
    Fausto, N. and J. L. v. Lancker: Molecular Mechanisms of Liver Regeneration IV: Thymidylic Kinase and Deoxyribonucleic Acid Polymerase Activities in Normal and Regenerating Liver. J. Biol. Chem.240, 1247–1255 (1965).Google Scholar
  12. 12.
    Friedkin, M., E. J. Crawford, E. Donovan and E. J. Pastore: The Enzymatic Synthesis of Thymidylate. III: The Further Purification of Thymidylate Synthetase and its Separation from Natural Fluorescent Inhibitiors. J. Biol. Chem.237, 3811–3814 (1962).Google Scholar
  13. 13.
    Gallo, R. C., S. Perry and T. R. Breitman: The Enzymatic Mechanisms for Deoxythymidine Synthesis in Human Leukocytes. J. Biol. Chem.242, 5059–5068 (1967).Google Scholar
  14. 14.
    Gallo, R. C., and S. Perry: The Enzymatic Mechanisms for Deoxythymidine Synthesis in Human Leukocytes. IV: Comparisons between Normal and Leukemic Leukocytes. J. Clin. Invest.48, 105–116 (1969).Google Scholar
  15. 15.
    Grav, H. J. and R. M. S. Smellie: The Mechanism of Formation of Thymidine 5′-Triphosphate by Enzyme from Landschutz Ascites-Tumor Cells. Biochem. J.89, 486–491 (1963).Google Scholar
  16. 16.
    Grav, H. J. and R. M. S. Smellie: Fraction of Thymidine Phosphokinase, Thymidine 5′-Monophosphate Phosphokinase and Thymidine 5′-Diphosphate Phosphokinase in Extracts of Landschutz Ascites-Tumor Cells. Biochem. J.94, 518–524 (1965).Google Scholar
  17. 17.
    Gray, E. D., S. M. Weissman, J. Richards, D. Bell, H. M. Keir, R. M. S. Smellie and J. N. Davidson: Studies on the Biosynthesis of Deoxyribonucleic Acid by Extracts of Mammalian Cells. Biochim. Biophys. Acta45, 111–120 (1960).Google Scholar
  18. 18.
    Ives, D. H., P. A. Morse and R. V. Potter: Feedback Inhibition of Thymidine Kinase by Thymidine Triphosphate. J. Biol. Chem.238, 1467–1474 (1963).Google Scholar
  19. 19.
    Ives, D. H.: Thymidine Diphosphate as an Intermediate in Thymidine Triphosphate Synthesis in Mammalian Tumor. Fed. Proc.23, 169 (1964).Google Scholar
  20. 20.
    Ives, D. H.: Evidence for Thymidine Diphosphate as the Precursor of Thymidine Triphosphate in Tumor. J. Biol. Chem.240, 819–824 (1965).Google Scholar
  21. 21.
    Kornberg, A., I. R. Lehman, M. J. Bessman and E. S. Simms: Enzymic Synthesis of Deoxyribonucleic Acid. Biochim. Biophys. Acta21, 197–198 (1956).Google Scholar
  22. 22.
    Manson, L. A. and J. A. Lampen: The Metabolism of Deoxyribose Nucleosides in Escherichia Coli. J. Biol. Chem.193, 539–547 (1952).Google Scholar
  23. 23.
    Marsh, J. C. and S. Perry: Thymidine Catabolism by Normal and Leukemic Human Leukocytes. J. Clin. Invest.43, 267–278 (1964).Google Scholar
  24. 24.
    McAuslan, B. R. and W. K. Joklik: Stimulation of the Thymidine Phosphorylating System in Hela Cells on Infection with Poxvirus. Biochem. Biophys. Res. Comm.8, 486–491 (1962).Google Scholar
  25. 25.
    McDougall, B. and R. L. Blakley: The Biosynthesis of Thymidylic Acid. I: Preliminary Studies with Extracts of Streptococcus faecalis. J. Biol. Chem.236, 832–837 (1961).Google Scholar
  26. 26.
    Mayfield, E. D., R. A. Liebelt and E. Bresnick: Activities of Enzymes of Deoxyribonucleic Acid Synthesis after Unilateral Nephrectomy. Canc. Res.27, 1652–1657 (1967).Google Scholar
  27. 27.
    Nakai, G. S., E. Michael, M. Peterson and C. G. Craddok: Thymidine and Thymidylate Kinase and Thymidylate Phosphatase in Human Leukemic Leukocytes. Clin. Chim. Acta14, 422–425 (1966).Google Scholar
  28. 28.
    Okazaki, R. and A. Kornberg: Deoxythymidine Kinase of Escherichia Coli. I: Purification and some Properties of the Enzyme. II: Kinetics and Feedback Control. J. Biol. Chem.239, 269–284 (1964).Google Scholar
  29. 29.
    Pastore, E. J. and M. Friedkin: The Enzymatic Synthesis of Thymidylate. II: Transfer of Tritium from Tetrahydrofolate to the Methyl Group of Thymidylate. J. Biol. Chem.237, 3802–3810 (1962).Google Scholar
  30. 30.
    Potter, V. R., H. C. Pitot, A. B. McElya and P. A. Morse: Alternative Pathways for Biosynthesis of Thymidylic Acid. Fed. Proc.19, 312 (1960).Google Scholar
  31. 31.
    Rabinowitz, Y. and B. A. Wilhite: Thymidine Salvage Pathway in Normal and Leukemic Leukocytes with Effects of ATP on Enzyme Control. Blood33, 759–771 (1969).Google Scholar
  32. 32.
    Roth, J. S.: A Hypothesis Concerning Patterns of Deoxynucleotide Metabolism in Tumors in Relation to Rate of Cell Proliferation. J. Theoret. Biol.4, 113–123 (1963).Google Scholar
  33. 33.
    Schollenberger, S.: Untersuchungen über den Stoffwechsel von Thymidin und Thymidinmonophosphat in normalen und pathologischen Zellen des Blutes und des Knochenmarkes. Inaug.-Diss., Tübingen 1971.Google Scholar
  34. 34.
    Wahba, A. J. and M. Friedkin: The Enzymatic Synthesis of Thymidylate I: Early Steps in the Purification of the Thymidylate Synthetase of Escherichia Coli. J. Biol. Chem.237, 3794–3801 (1962).Google Scholar
  35. 35.
    Weissman, S. M., R. M. S. Smellie and J. Paul. Studies on the Biosynthesis of Deoxyribonucleic Acid by Extracts of Mammalian Cells. IV: The Phosphorylation of Thymidine. Biochim. Biophys. Acta45, 101–110 (1960).Google Scholar
  36. 36.
    Wilmanns, W.: Die Thymidin-Kinase in normalen und leukämischen myeloischen Zellen. Klin. Wschr.45, 501–511 (1967).Google Scholar

Copyright information

© J. F. Lehmanns Verlag 1972

Authors and Affiliations

  • Sigrid Schollenberger
    • 1
  • Dorothea Taureck
    • 1
  • Wolfgang Wilmanns
    • 1
  1. 1.Medizinischen Universitätsklinik Tübingen74 Tübingen

Personalised recommendations