Advertisement

Zeitschrift für Physik C Particles and Fields

, Volume 36, Issue 4, pp 629–637 | Cite as

The effective string andSU(2) lattice MC data

  • M. Flensburg
  • A. Irbäck
  • C. Peterson
Article

Abstract

We present high statistics MC calculations of the static potential in three-dimensionalSU(2) for a wide range of β values on a 243 lattice. The deviations from area law are unambiguously demonstrated by use of 2nd latticeR derivative. After a clear crossover at β=4.5 the data show signs of an effective string roughening up to β=6.5, while scaling is not strictly obeyed in this interval. Pure fermionic strings do not provide better fits. The effect of regularization prescription on the effective string model up to two-loop correction is discussed and is found to be small. We also make a comparative study of existing data onZ(2) andSU(3) together with new data on fourdimensionalSU(2) presented here. It is pointed out that standard variance reduction methods as applied especially to Wilson lines are plagued by severe long range auto-correlations, whereas larger Wilson loops are less affected.

Keywords

Wilson Loop Wilson Line Plague String Model latticeR Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Ambjorn, P. Olesen, C. Peterson: Phys. Lett. 142B (1984) 410; Nucl. Phys. B244 (1984) 262Google Scholar
  2. 2.
    Ph. deForcrand, G. Schierholz, H. Schneider, M. Teper: Phys. Lett. 160B (1985) 137Google Scholar
  3. 3.
    M. Flensburg, C. Peterson: Phys. Lett. 153B (1985) 412Google Scholar
  4. 4.
    M. Flensburg, C. Peterson: Nucl. Phys. B283 (1987) 141Google Scholar
  5. 5.
    M. Luscher, K. Symanzik, P. Weisz: Nucl. Phys. B 173 (1980) 365 M. Luscher: Nucl. Phys. B180 (1981) 317Google Scholar
  6. 6.
    O. Alvarez: Phys. Rev. D24 (1981) 317Google Scholar
  7. 7.
    J.F. Arvis: Phys. Lett. B127 (1983) 106Google Scholar
  8. 8.
    R.D. Pisarski, O. Alvarez: Phys. Rev. D26 (1982) 3735Google Scholar
  9. 9.
    P. Olesen: Phys. Lett. 160B (1985) 408Google Scholar
  10. 10.
    M. Caselle, R. Fiore, F. Gliozzi, R. Alzetta: DFTT-7/86Google Scholar
  11. 11.
    A.M. Polyakov: Phys. Lett. 103B (1981) 211Google Scholar
  12. 12.
    E. Fradkin, M. Srednicki, L. Susskind: Phys. Rev. D21 (1980) 2885Google Scholar
  13. 13.
    G. Parisi, R. Petronzio, F. Rapuano: Phys. Lett. 128B (1983) 418; F. Karsch, C.B. Lang: Phys. Lett. 138B (1984) 176Google Scholar
  14. 14.
    E. Braten, R.D. Pisarski, Sze-Man Tse: Phys. Rev. Lett. 58 (1987) 93Google Scholar
  15. 15.
    K. Dietz, T. Filk: Phys. Rev. D27 (1983) 2944; T. Filk: Bonn preprint BONN-IR-82-19Google Scholar
  16. 16.
    R. Sommer, M. Schilling: Wuppertal preprint WU B85-6Google Scholar
  17. 17.
    K.C. Bowler et al.: (compiled by A. Hasenfratz and P. Hasenfratz, CERN, Nov. 1984)Google Scholar
  18. 18.
    J.W. Flower, S.W. Otto: private communicationGoogle Scholar
  19. 19.
    Ph. deForcrand: 244 lattice (compiled by A. Hasenfratz and P. Hasenfratz, CERN, Nov. 1984)Google Scholar
  20. 20.
    F. Gutbrod: Z. Phys. C—Particles and Fields 50 (1986) 585Google Scholar
  21. 21.
    U. Heller, F. Karsch: Nucl. Phys. B251 (1985) 254Google Scholar
  22. 22.
    During the completion of this work we learnt that Hoek and Dalitz had observed the same critical autocorrelations for Wlines those presented here. Due to these, we had by that time chosen to focus on W-loop measurements instead. J. Hoek, R.H. Dalitz: Phys. Lett. 177B (1986) 180Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • M. Flensburg
    • 1
  • A. Irbäck
    • 2
  • C. Peterson
    • 2
  1. 1.NORDITACopenhagenDenmark
  2. 2.Department of Theoretical PhysicsUniversity of LundLundSweden

Personalised recommendations