Surgical and Radiologic Anatomy

, Volume 16, Issue 4, pp 429–438

The morphology of articular cartilage assessed by magnetic resonance imaging (MRI)

Reproducibility and anatomical correlation
  • F Eckstein
  • H Sittek
  • S Milz
  • R Putz
  • M Reiser
Radiological Anatomy


Quantitative assessment of cartilage volume and thickness in a formalin-alcohol fixed specimen of a human patella was conducted with magnetic resonance imaging (MRI), as it is still unclear whether the morphology of normal and damaged cartilage can be accurately demonstrated with this technique. MR imaging was carried out at 1.0 T (section thickness 2 mm, in-plane-resolution 0.39 – 0.58 mm) with the following pulse sequences: 1) T1-weighted spin-echo, 2) 3D-MPRA-GE, 3) 3D-FISP, 4) 3D-MTC-FISP, 5) 3D-DESS, 6) 3D-FLASH. Following imaging, the patella was sectioned perpendicular to the articular surface at intervals of 2 mm with a diamond band-saw. The volume of its cartilage was determined from the anatomical sections and the MR images, using a Vidas IPS 10 image analysing system (Kontron). Measurements were carried out with and without the low-signal layer in the transitional zone between the articular cartilage and the subchondral bone. If the low-signal layer was included, the volume was overestimated with MRI by 16 to 19 %. Without the low-signal layer the volumes were less than those determined from the anatomical sections: T1-SE −18,2 %, MPRAGE −22.6 %, FISP −17.1 %, MTC-FISP −9.5 %, DESS −9,3% and FLASH −6.1 %. The coefficient of variation for a 6-fold determination of the volume amounted to between 6.2 % (T1-SE) and 2.6 % (FLASH). The FLASH sequence allowed the most valid and reproducible assessment of the cartilage morphology. The remaining difference from the real volume of the cartilage may be due to the fact that the calcified zone of the cartilage is not delineated by MRI.

Key words

Articular cartilage Magnetic resonance imaging Cartilage thickness Patella Knee joint 

Appréciation de la morphologie du cartilage articulaire par la résonance magnétique nucléaire (IRM)


L'évaluation quantitative de l'épaisseur et du volume du cartilage de patellas humaines, fixées dans un mélange d'alcool et de formol, a été réalisée en imagerie par résonance magnétique (IRM) car on ne sait encore avec exactitude si l'aspect morphologique du cartilage normal ou lésé peut être parfaitement démontré par cette technique. L'IRM a été réalisée sur un appareil 1.0 T (épaisseur de coupe : 2 mm, résolution : 0,39–0,58 mm) avec les séquences suivantes : 1) séquence en spin écho pondéré T1, 2) 3D-MRAGE, 3) 3D-FISP, 4) 3D-MTC-FISP, 5) 3D-DESS, 6) 3D-FLASH. Après la réalisation de l'IRM, la patella était sectionnée tous les 2 mm, perpendiculairement à sa surface articulaire, à l'aide d'une scie à ruban. Le volume de son cartilage était déterminé sur les coupes anatomiques et les images IRM grâce à un système d'analyse d'images Vidas IPS 10 (Kontron). Les mesures étaient réalisées avec et sans la couche en hyposignal correspondant à la zone transitionnelle située entre le cartilage articulaire et l'os sous-chondral. Lorsque cette couche en hyposignal était prise en compte, le volume était surestimé par l'IRM de 16 à 19%. Lorsque cette couche en hyposignal n'était pas prise en compte, les volumes étaient inférieurs à ceux déterminés par les coupes anatomiques :

T1-SE : −18,2%, MPRAGE : −22,6%, FISP : − 17,1%, MTC-FISP : − 9,5%, DESS : − 9,3% et FLASH : −6,1%. La séquence FLASH permettait l'appréciation la plus correcte et la plus reproductible de la morphologie du cartilage. La différence persistante par rapport au volume réel du cartilage peut être due au fait que la zone calcifiée du cartilage n'est pas délimitée par l'IRM.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adam G, Bohndorf K, Prescher A, Krasny R, Günther RW (1988) Der hyaline Gelenkknorpel in der MR Tomographie des Kniegelenks bei 1,5 T. RÖFO 148: 648–651Google Scholar
  2. 2.
    Adam G, Bohndorf K, Prescher A, Drobnitzky M, Günther W (1989) Kernspintomographie der Knorpelstrukturen des Kniegelenks mit 3D-Volumen-Imaging in Verbindung mit einem schnellen Bildrechner. RÖFO 150: 44–48Google Scholar
  3. 3.
    Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence-initial experience in the brain. Radiology 182: 769–775Google Scholar
  4. 4.
    Bruder H, Fischer H, Graumann R, Deimling M (1988) A new steady-state imaging sequence for simultaneous acquisition of two MR images with clearly different contrasts. Magn Res Med 7: 35–42Google Scholar
  5. 5.
    Mc Cauley TR, Kier R, Lynch KJ, Jokl P (1992) Chondromalacia patellae. Diagnosis with MR imaging. AJR 158: 101–105Google Scholar
  6. 6.
    Chandnani VP, Ho C, Chu P, Trudell D, Resnick D (1991) Knee hyaline cartilage evaluated with MR imaging: a cadaveric study involving multiple imaging sequences and intraarticular injection of gadolinium and saline solution. Radiology 178: 557–561Google Scholar
  7. 7.
    Ficat P, Hungerford DS (1977) Disorders of the patellofemoral joint. Masson, ParisGoogle Scholar
  8. 8.
    Forsen S, Hoffmann RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear double resonance. J Chem Phys 39: 2892–2901Google Scholar
  9. 9.
    Freeman DM, Bergmann AG, Hurd RE, Glover G (1993) Accurate measurement of hyaline cartilage and cortical bone thickness using short TE MR microscopy. Society of Magnetic Resonance in Medicine, 12th annual meeting, New York, Book of abstracts, p 880Google Scholar
  10. 10.
    Gylys-Morin VM, Hajek PC, Sartoris DJ, Resnick D (1987) Articular cartilage defects: Detectibility in cadaver knees with MR. AJR 148: 1153–1157Google Scholar
  11. 11.
    Handelberg F, Shahabpour M, Casteleyn PP (1990) Chondral lesions of the patella evaluated with computed tomography, magnetic resonance imaging, and arthroscopy. Arthroscopy 6: 24–29Google Scholar
  12. 12.
    Hayes CW, Sawyer RW, Conway WF (1990) Patellar cartilage lesions: in vitro detection and staging with MR imaging and pathologic correlation. Radiology 176: 479–483Google Scholar
  13. 13.
    Heron CW, Calvert PT (1992) Three-dimensional gradient-echo MR imaging of the knee: comparison with arthroscopy in 100 patients. Radiology 183: 839–844Google Scholar
  14. 14.
    Hodler J, Berthiaume MJ, Schweitzer ME, Resnick D (1992) Knee joint hyaline cartilage defects: a comparative study of MR and anatomic sections. J Comput Assist Tomogr 164: 597–603Google Scholar
  15. 15.
    Hodler J, Trudell D, Pathria MN, Resnick D (1992) Width of the articular cartilage of the hip: quantification by using fat-suppression spin-echo MR imaging in cadavers. AJR 159: 351–359Google Scholar
  16. 16.
    Johnsson K, Buckwalter K, Helvie M, Niklason L, Martel W (1992) Precision of hyaline cartilage thickness measurements. Acta Radiol 33: 234–239Google Scholar
  17. 17.
    Kim DK, Ceckler TL, Hascall VC, Calabro A, Balaban S (1993) Analysis of water-macromolecule proton magnetization transfer in articular cartilage. Magn Res Med 29: 211–215Google Scholar
  18. 18.
    Kim JK, Rubenstein JD, Johnson GA, Henkelmann RM (1993) High Resolution MRI of bovine articular cartilage. Society of Magnetic Resonance in Medicine, 12th annual meeting, New York, Book of abstracts, p 410Google Scholar
  19. 19.
    König H, Sauter R, Deimling M, Vogt M (1987) Cartilage disorders: comparison of spin-echo, Chess, and Flash sequence MR images. Radiology 164: 753–758Google Scholar
  20. 20.
    König H, Aicher K, Klose U, Saal J (1990) Quantitative evaluation of hyaline cartilage disorders using Flash sequence. Clinical applications. Acta Radiol 31: 377–381Google Scholar
  21. 21.
    Kramer J, Stiglbauer R, Engel A Prayer L, Imhoff H (1992) MR contrast arthrography (MRA) in osteochondrosis dissecans. J Comput Assist Tomogr 16: 254–260Google Scholar
  22. 22.
    Kusaka Y, Gründer W, Rumpel H, Dannhauer KH, Gersonde K (1992) MR microimaging of articular cartilage and contrast enhancement by manganese ions. Magn Res Med 24: 137–148Google Scholar
  23. 23.
    Lehner KB, Rechl HP, Gmeinwieser JK, Heuck AF, Lukas HP, Kohl HP (1989) Structure, function, and degeneration of bovine hyaline cartilage: assessment with MR imaging in vitro. Radiology 170: 495–499Google Scholar
  24. 24.
    Lenz GW, Goldmann AR, Deimling M, Boettcher U (1993) Improvement of synovial fluid contrast in the knee with MTC and DESS at 0,2 T. Society of Magnetic Resonance in Medicine, 12th annual meeting, New York, Book of abstracts, p 181Google Scholar
  25. 25.
    Modl JM, Sether LA, Haughton VM, Kneeland JB (1991) Articular cartilage: correlation of histologic zones with signal intensity at MR imaging. Radiology 181: 853–855Google Scholar
  26. 26.
    Müller-Gerbl M, Putz R, Schulte E (1987) The thickness of the calcified layer of articular cartilage: a function of the load supported? J Anat 154: 103–111Google Scholar
  27. 27.
    Nakanishi K, Inoue M, Ikezoe KHJ, Murakami T, Nakamura H, Kozuka T (1992) Subluxation of the patella: evaluation of patellar articular cartilage with MR imaging. Br J Radiol 65: 662–667Google Scholar
  28. 28.
    Outerbridge RE (1964) Further studies on the etiology of chondromalacia patellae. J Bone Joint Surg [Br] 46-B: 149–190Google Scholar
  29. 29.
    Piraino D, Recht M, Hardy P, Schils J, Richmond B, Belhobek G (1993) The optimization of 3 D MPRAGE for imaging knee cartilage. Society of Magnetic Resonance in Medicine, 12th annual meeting, New York, Book of abstracts, p 865Google Scholar
  30. 30.
    Recht MP, Kramer J, Marcelis S, Pathria MN, Trudell D, Haghighi P, Sartoris DJ, Resnick D (1993) Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology 187: 473–478Google Scholar
  31. 31.
    Reicher MA, Rauschning W, Gold RH, Bassett LW, Lufkin RB, Glen W (1985) High-resolution magnetic resonance imaging of the knee joint: normal anatomy. AJR 145: 895–902Google Scholar
  32. 32.
    Reiser MF, Bongarz G, Erlemann R, Strobel M, Pauly T, Gaebert K, Stoeber U, Peters PE (1988) Magnetic resonance in cartilaginous lesions of the knee joint with three-dimensional gradient-echo imaging. Skeletal Radiol 17: 465–471Google Scholar
  33. 33.
    Rubenstein JD, Kim JK, Morava-Protzner I, Stanchev PL, Henkelmann RM (1993) Effects of collagen orientation on MR imaging characteristics of bovine articular cartilage. Radiology 188: 219–226Google Scholar
  34. 34.
    Speer KP, Spritzer CE, Goldner JL, Garrett WE (1991) Magnetic resonance imaging of traumatic articular cartilage injuries. Am J Sports Med 19: 396–402Google Scholar
  35. 35.
    Steinbrich W, Beyer D, Friedmann G, Ermers JW, Bueß G, Schmidt KH (1985) MR des Kniegelenkes. RÖFO 143: 166–172Google Scholar
  36. 36.
    Thomas L (1992) Labor und Diagnose. Medizinische Verlagsgesellschaft, MarburgGoogle Scholar
  37. 37.
    Tottermann S, Weiss SL, Szumowski J, Katzberg RW, Hornak JP, Proskin HM, Eisen J (1989) MR Fat suppression technique in the evaluation of normal structures of the knee. J Comput Assist Tomogr 13: 473–479Google Scholar
  38. 38.
    Tyrell RL, Gluckert K, Pathria M, Modic MT (1988) Fast three-dimensional MR imaging of the knee: comparison with arthroscopy. Radiology 166: 865–872Google Scholar
  39. 39.
    Vahlensieck M, Leutner C, Dombrowsky F, Vogel J, Träber F, de Boer R, Reiser M (1993) Magnetization transfer contrast (MTC) of the human knee joint-detection of early cartilage degeneration. Society of Magnetic Resonance in Medicine, 12th annual meeting, New York, Book of abstracts, p 881Google Scholar
  40. 40.
    Vogel H, Krüger L, Hallata Z, Zander C (1986) Knorpel im Kernspintomogramm. Digit Bildiagn 6: 118–122Google Scholar
  41. 41.
    Wojtys E, Mark W, Buckwalter K, Braunstein E, Martel W (1987) Magnetic resonance imaging of knee hyaline cartilage and intraarticular pathology. Am J Sports Med 15: 455–463Google Scholar
  42. 42.
    Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Res Med 10: 135–144Google Scholar
  43. 43.
    Wolff SD, Chesnick S, Frank JA, Lim KO, Balban RS (1991) Magnetization transfer contrast: MR imaging of the knee. Radiology 179: 623–628Google Scholar
  44. 44.
    Wolff SD, Eng J, Balaban RS (1991) Magnetization transfer contrast: method of improving contrast in gradient-recalled-echo images. Radiology 179: 133–137Google Scholar
  45. 45.
    Wrazidlo W, Schneider S, Richter GM, Kauffmann GW, Bläsius K, Gottschlich KW (1990) Darstellung des hyalinen Gelenkknorpels mit der MR-Tomographie mittels einer Gradientencho-Sequenz mit Fett Wasser-Phasenkohärenz. RÖFO 152: 56–59Google Scholar
  46. 46.
    Yao L, Sinha S, Seeger LL (1992) MR imaging of joints: analytic optimization of GRE techniques at 1,5 T. AJR 158: 339–345Google Scholar
  47. 47.
    Yulish BS, Montanez J, Goodfellow DB, Bryan PJ, Mulopulos GP, Modic MT (1987) Chondromalacia patellae: assessment with MR imaging. Radiology 164: 763–766Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • F Eckstein
    • 1
    • 2
  • H Sittek
    • 1
  • S Milz
    • 2
  • R Putz
    • 2
  • M Reiser
    • 1
  1. 1.Klinikum GroßhadernInstitut für Radiologische DiagnostikMünchenGermany
  2. 2.Anatomische AnstaltLudwig-Maximilians UniversitätMünchenGermany

Personalised recommendations