Advertisement

Surgical and Radiologic Anatomy

, Volume 16, Issue 4, pp 367–371 | Cite as

Longus colli has a postural function on cervical curvature

  • MA Mayoux-Benhamou
  • M Revel
  • C Vallée
  • R Roudier
  • JP Barbet
  • F Bargy
Original Articles

Summary

To determine the postural role of longus colli (LC) and dorsal neck muscles, we have studied the relationship between their cross-sectional areas related to their force of contraction and the lordosis and the length of the cervical spine. This study was carried out in 36 healthy subjects. Muscle cross-sectional areas were measured by computerized tomography. The index of lordosis and the length of the cervical spine were measured on an X-ray profile. The cross-sectional area of LC was correlated to the lordosis index (R=−0.432, p<0.02) whereas all the other parameters were not correlated. The authors conclude that LC counteracts the lordosis increment related to the weight of the head and to the contraction of the dorsal neck muscles. Postural functions of LC and postcervical muscles are complementary. They form a sleeve which encloses and stabilizes the cervical spine in all positions of the head.

Key words

Neck muscles Longus colli Cervical spine Lordosis Posture 

Rôle postural du muscle long du cou

Résumé

Le rôle postural du muscle longus colli (LC) et des muscles de la nuque fut précisé par l'étude de la relation entre d'une part la surface de section de ces muscles, témoin indirect de leur force de contraction, et d'autre part la longueur et la lordose de la colonne cervicale. 36 sujets sains participèrent à cette étude. La mesure des surfaces de section musculaires fut tomodensitométrique alors que celle de l'indice de lordose et de la longueur cervicale fut faite sur une radiographie cervicale de profil. La surface de section du LC était inversement corrélée à l'indice de lordose (r=−0,432). Aucune autre corrélation ne fut trouvée entre les autres paramètres étudiés. Les auteurs concluent que la contraction du LC maintient la lordose cervicale que le poids de la tête et la contraction des muscles de la nuque tendent à accroître. Les fonctions posturales du LC et des muscles de la nuque sont complémentaires. Ensemble, ils forment un manchon qui enserre et stabilise la colonne cervicale dans toutes les positions de la tête.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaron C, Gillot C (1962) Muscle psoas et courbures lombaires. Bulletin de l'Association des Anatomistes, XLVIIIéme réunion (Toulouse)Google Scholar
  2. 2.
    Arlet J, Adam, Lacomme (1950) Analyse radiologique de 100 colonnes cervicales pathologiques. Rev Rhum 17: 99–114Google Scholar
  3. 3.
    Asmussen E (1960) The weight carrying function of the human spine. Acta Ortho Scand 29: 276–290Google Scholar
  4. 4.
    Basmajian JV (1958) Electromyography of iliopsoas. Anat Rec 132: 127–132Google Scholar
  5. 5.
    Delahaye RP, Gueffier G (1968) La radiologie dynamique du rachis cervical du personnel navigant militaire ; cas particulier des pilotes d'avion à réaction. Rev Corps Santé des Armées 5: 593–614Google Scholar
  6. 6.
    Delmas A (1958) L'acquisition de la station érigée. In: Les processus de l'hominisation. Colloques internationaux du centre national de la recherche scientifique, Paris 19–23 mai, pp 9–35Google Scholar
  7. 7.
    Donisch EW, Basmajian JV (1972) Electromyography of deep back muscles in man. Am J Anat 133: 25–36Google Scholar
  8. 8.
    Floyd WF, Silver PHS (1951) Function of the erectores spinae in the flexion of the trunk. Lancet 260: 133–134Google Scholar
  9. 9.
    Fountain FP, Minear WL, Allison PD (1966) Function of longus colli and longissimus cervicis muscles in man. Arch Phys Med Reh 47: 665–669Google Scholar
  10. 10.
    Gillot C (1965) Eléments d'anatomie. Fascicule 1: parois du tronc. Flammarion, ParisGoogle Scholar
  11. 11.
    Harms-Ringdahl K, Ekholm J, Schüldt K, Nemeth G, Arborelius VP (1986) Load moments and myoelectric activity when the cervical spine is held in full flexion and extension. Ergonomics 29: 1539–1552Google Scholar
  12. 12.
    Ikai M, Fukunaga T (1968) Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Internationale Zeitschrift für Angewandte Physiologie Einschliesslich Arbeits Physiologie 26: 26–32Google Scholar
  13. 13.
    Lessertisseur J, Saban R (1967) Squelette axial. In: Grassé PP (ed) Traité de zoologie, anatomie systématique biologie, Tome XVI, 1er fascicule, pp 584–675Google Scholar
  14. 14.
    Maughan RJ, Watson JS, Weir J (1983) Strength and cross-sectional area of human skeletal muscle. J Physiol 338: 37–49Google Scholar
  15. 15.
    Maughan R, Nimmo MA (1984) The influence of variations in muscle fibre composition on muscle strength and cross-sectional area in intreated males. J Physiol 351: 299–311Google Scholar
  16. 16.
    Mayoux-Benhamou MA, Wybier M, Revel M (1989) Strength and cross-sectional area of neck muscles. Ergonomics 32: 513–518Google Scholar
  17. 17.
    Morris JM, Benner G, Lucas DB (1962) An electromyographic study of the intrinsic muscles of the back in man. J Anat Lond 96: 500–520Google Scholar
  18. 18.
    Nachemson A (1966) Electromyographic studies on the vertebral portion of the psoas muscle. Acta Orthop Scand 37: 177–190Google Scholar
  19. 19.
    Pal GP, Sherk HH (1988) The vertical stability of the cervical spine. Spine 13: 447–449Google Scholar
  20. 20.
    Paturet G (1951) Traité d'Anatomie Humaine, tome I. Masson, ParisGoogle Scholar
  21. 21.
    Peck D, Buxton DF, Nitz A (1984) A comparison of spindle concentrations in large and small muscles acting in parallel combinations. J Morphol 180: 243–252Google Scholar
  22. 22.
    Rabischong P, Lavril J (1965) Rôle biomécanique des poutres composites os muscle. Rev Chir Orthop 51: 437–458Google Scholar
  23. 23.
    Rasch PJ, Burke RK (1971) Kinesiology and applied anatomy, 4th edn. Lea & Febiger, Philadelphia, pp 269–299Google Scholar
  24. 24.
    Revel M, Samuel J, Andrés JC (1982) Physilogie du muscle psoas major. Ann Kinesither 9: 7–39Google Scholar
  25. 25.
    Rizzi MA, Covelli B (1975) Biomechanischer Beitrag zur Berechnung der Kräfte der Halsmuskulatur und deren Wirkung. Z Orthop 113: 371–377Google Scholar
  26. 26.
    Rouvière H (1970) Anatomie Humaine descriptive et topographique, tome I. Masson, ParisGoogle Scholar
  27. 27.
    Schantz P, Randall Fox E, Hutchison W, Tyden A, Astrand PO (1983) Muscle fibre type distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta Physiol Scand 117: 219–226Google Scholar
  28. 28.
    Schüldt K (1988) On neck muscle activity and load reduction in sitting postures. Scand J Rehab Med 19: 2–49Google Scholar
  29. 29.
    Steindler A (1964) Kinesiology of the human body, 2nd edn. Thomas, SpringfieldGoogle Scholar
  30. 30.
    Vitti M, Fujiwara M, Basmajian JV, Iida M (1973) The integrated roles of longus colli and sternocleidomastoid muscles: an electromyographic study. Anat Rec 177: 471–484Google Scholar
  31. 31.
    Young A, Stokes M, Walker ICR, Newham (1981) The relationship between quadriceps size and strength in normal young adults. Ann Rheum Dis 40: 619–620Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • MA Mayoux-Benhamou
    • 1
  • M Revel
    • 2
  • C Vallée
    • 3
  • R Roudier
    • 2
  • JP Barbet
    • 4
  • F Bargy
    • 1
  1. 1.Laboratoire d'AnatomieCHU Cochin Port-RoyalParis
  2. 2.Clinique de RhumatologieHôpital CochinParis
  3. 3.Service de Radiologie BHôpital CochinParis
  4. 4.Laboratoire de Pathologie PédiatriqueHôpital Saint Vincent de PaulParis

Personalised recommendations