Advertisement

Combined effects of cadmium and salinity on development and survival of herring eggs

  • H. von Westernhagen
  • H. Rosenthal
  • K. -R. Sperling
Article

Summary

1. Eggs of autumn spawning Baltic herring (Clupea harengus L.) were incubated in cadmium-contaminated water (0, 0.1, 0.5, 1.0, 5.0 ppm) at four salinities (5 ‰, 16 ‰, 25 ‰, 32 ‰) in order to evaluate possible changes in toxicity of Cd.

2. Effects of Cd on embryonic survival were found to be dependent on salinity of the incubating water. Deleterious effects of Cd on developing herring embryos were more pronounced in brackish water than in sea water.

3. Embryonic activity, as a measure of viability of developing embryos, decreased in Cd concentrations with decreasing salinity.

4. In none of the trials was egg diameter altered by the Cd content of the incubation water.

5. In all salinities, incubation time appeared to be shortened with increasing Cd content of the test medium.

6. At 5 ‰, 16 ‰, 25 ‰ and 0, 0.1, 0.5 and 1.0 ppm, hatching rate was not significantly altered by Cd. High hatching rates between 85 to 99% occurred in all salinity-Cd combinations. At high Cd levels (5.0 ppm), there was greater survival of embryos at high salinities (32 ‰ and 25 ‰) than at low salinities (16 ‰ and 5 ‰).

7. Percentage viable hatch was unaffected at 32 ‰, 25 ‰ and 16 ‰ S and 0, 0.1 and 0.5 ppm Cd. In low salinities (5 ‰), only 1% viable hatch occurred at 0.5 ppm; in 16 ‰, 61.5 % viable hatch occurred at 1.0 ppm Cd. No viable larvae were obtained in any tests at 5.0 ppm Cd.

8. In all salinities examined, mean total length of newly hatched larvae decreased with increasing Cd concentration of the rearing medium. Relative decrease in mean total length was minimum at 32 ‰ S.

9. In all four test concentrations yolk sac volumes of newly hatched larvae increased with rising Cd concentrations, probably associated with declining embryo activity.

10. The Cd content of eggs was found to be generally higher in lower salinities than in more saline water at comparable Cd concentrations.

Keywords

Clupea Harengus Embryonic Survival Viable Larva Baltic Herring High Hatching Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Kombinierte Wirkungen von Cadmium und Salzgehalt auf Entwicklung und Überleben von Heringseiern

Kurzfassung

Eier des herbstlaichenden Ostseeherings (Clupea harengus L.) wurden in natürlichem und in Cadmium kontaminiertem Seewasser (Konzentrationen: 0,1; 0,5; 1,0; 5,0 ppm Cd) bei verschiedenen Salzgehalten (5 ‰ 16 ‰ 25‰ 32‰) erbrütet. Die Toxizität von Cd wurde im Hinblick auf folgende Kriterien bewertet: Embryoaktivität und Überlebensraten bis zum Schlupf, Veränderungen der Eimembran, Verschiebung des Schlupfzeitpunktes, Unterschiede in den Schlupfraten, Anteil der lebensfähigen Larven und deren mittlere Totallänge sowie Durchmesser der Augen und Gehörkapseln frischgeschlüpfter Larven. Darüber hinaus wurde die Aufnahme von Cd in Abhängigkeit von Konzentration und Salzgehalt im Verlauf der Embryonalentwicklung bestimmt. Die Beeinträchtigung der Heringsembryonen durch Cd war in brackigem Wasser stärker als in unverdünntem Meerwasser. Auch die konzentrationsabhängige Aufnahme von Cd nahm mit sinkendem Salzgehalt des Erbrütungsmediums zu.

Literature cited

  1. Abdullah, M. J., Royle, L. G. &Morris, A. W., 1972. Heavy metal concentration in coastal waters. Nature, Lond.235, 158–160.Google Scholar
  2. Andersen, A. T., Dommasnes, A. &Hesthagen, I. H., 1973. Some heavy metals in sprat(Sprattus sprattus) and herring(Clupea harengus) from the inner Oslofjord. Aquaculture2, 17–22.Google Scholar
  3. Ball, I. R., 1967. The toxicity of cadmium to rainbow trout(Salmo gairdnerii Richardson). Wat. Res.1, 805–806.Google Scholar
  4. Biesinger, K. E. &Christensen, G. M., 1972. Effects of various metals on survival, growth, reproduction, and metabolism ofDaphnia magna. J. Fish. Res. Bd Can.29, 1691–1700.Google Scholar
  5. Brown, B. &Ahsanullah, M., 1971. Effect of heavy metals on mortality and growth. Mar. Pollut. Bull.2, 182–187.Google Scholar
  6. Butterworth, J., Lester, P. &Nickless, G., 1972. Distribution of heavy metals in the Severn estuary. Mar. Pollut. Bull.3, 72–74.Google Scholar
  7. Cearley, J. E. &Coleman, R. L., 1974. Cadmium toxicity and bioconcentration in largemouth bass and bluegill. Bull. environ. Contam. Toxicol.11, 146–151.Google Scholar
  8. Chester, R. &Stoner, J. H., 1974. The distribution of zinc, nickel, manganese, cadmium, copper, and iron in some surface waters from the world ocean. Mar. Chem.2, 17–32.Google Scholar
  9. Connor, P. M., 1972. Acute toxicity of heavy metals to some marine larvae. Mar. Pollut. Bull.3, 190–192.Google Scholar
  10. Danielli, J. F., 1944. The biological action of ions and the concentration of ions at surfaces. J. exp. Biol.20, 167–176.Google Scholar
  11. —— &Davies, J. T., 1951. Reactions at interfaces in relation to biological problems. Adv. Enzymol.11, 35–89.Google Scholar
  12. Eaton, J. G., 1973. Chronic toxicity of a copper, cadmium and zinc mixture to the fathead minnow (Pimephales promelas Rafinesque). Wat. Res.7, 1723–1736.Google Scholar
  13. Eisler, R., 1971. Cadmium poisoning inFundulus heteroclitus (Pisces: Cyprinodontidae) and other marine organisms. J. Fish. Res. Bd Can.28, 1225–1234.Google Scholar
  14. —— &Hennekey, R. J., 1972. Cadmium uptake by marine organisms. J. Fish. Res. Bd Can.29, 1367–1369.Google Scholar
  15. Gardiner, J., 1974. The chemistry of cadmium in natural water. 1. A study of cadmium complex formation using the cadmium specific-ion electrode. Wat. Res.8, 23–30.Google Scholar
  16. Goldberg, E. D., 1965: Minor elements in sea water. In: Chemical Oceanography. Ed. byJ. P. Riley &G. Skirrow. Academic Press, New York,1, 163–196.Google Scholar
  17. Holliday, F. G. T., Blaxter, J. H. S. &Lasker, R., 1964. Oxygen uptake of developing eggs and larvae of the herring(Clupea harengus). J. mar. biol. Ass. U.K.44, 711–723.Google Scholar
  18. Jones, P. G. W., Henry, J. L. &Folkard, A. R., 1973. The distribution of selected trace metals in the water of the North Sea 1971–1973. Coun. Meet. int. Coun. Explor. Sea (= C.M.-I.C.E.S.)5.Google Scholar
  19. Kobayashi, J., 1971. Relation between the “itai-itai” disease and the pollution of river water by cadmium from a mine. Adv. Wat. Pollut. Res.1, 1–32.Google Scholar
  20. Kremling, K., 1973. Voltametrische Messungen über die Verteilung von Zink, Cadmium, Blei und Kupfer in der Ostsee. Kieler Meeresforsch.29, 77–84.Google Scholar
  21. Leatherland, T. M. &Burton, J. D., 1974. The occurrence of some trace metals in coastal organisms with particular reference to the Solent region. J. mar. biol. Ass. U.K.54, 457–468.Google Scholar
  22. Mullin, J. B. &Riley, J. P., 1956. The occurrence of cadmium in seawater and in marine organisms and sediment. J. mar. Res.15, 103–122.Google Scholar
  23. Nickless, G., Stenner, R. &Terrille, N., 1972. Distribution of cadmium, lead and zinc in the Bristol Channel. Mar. Pollut. Bull.3, 188–190.Google Scholar
  24. O'Hara, J., 1973a. Cadmium uptake by fiddler crabs exposed to temperature and salinity stress. J. Fish. Res. Bd Can.30, 846–848.Google Scholar
  25. —— 1973b. The influence of temperature and salinity on the toxicity of cadmium to the fiddler crab,Uca pugilator. Fish. Bull. U.S.71, 149–153.Google Scholar
  26. Olson, K. R. &Harrel, R. C., 1973. Effect of salinity on acute toxicity of mercury, copper and chromium forRangia cuneata (Pelecypoda, Mactridae). Contr. mar. Sci.17, 9–13.Google Scholar
  27. Peden, J. D., Crothers, J. H., Waterfall, C. E. &Beasley, J., 1973. Heavy metals in Somerset marine organisms. Mar. Pollut. Bull.4, 7–9.Google Scholar
  28. Pickering, Q. H. &Henderson, C., 1966. The acute toxicity of some heavy metals to different species of warm water fishes. Int. J. Air Wat. Pollut.10, 453–463.Google Scholar
  29. —— &Gast, M., 1972. Acute and chronic toxicity of cadmium to the fathead minnow(Pime phales promelas). J. Fish Res. Bd Can.29, 1099–1106.Google Scholar
  30. Preston, A., 1973. Heavy metals in British waters. Nature, Lond.242, 95–97.Google Scholar
  31. —— &Steele, E. K., 1972. British Isles coastal waters: The concentrations of selected heavy metals in sea water, suspended matter and biological indicators — a pilot survey. Environ. Pollut.3, 69–82.Google Scholar
  32. Rosenthal, H., 1966. Leaving the egg shell. A film on the hatching of herring larvae. Coun. Meet. int. Coun. Explor. Sea (C.M.-I.C.E.S.)3, 1–3.Google Scholar
  33. —— &Mann, H., 1973. Wirkung eines proteolytischen Enzyms (Maxatase-P) auf Embryonen des Herings(Clupea harengus) bei unterschiedlichen Temperaturen und Salzgehalten. Arch. Fisch Wiss.24, 217–236.Google Scholar
  34. —— &Sperling, K. R., 1974. Effects of cadmium on development and survival of herring eggs. In: The early life history of fish. Ed. byJ. H. S. Blaxter. Springer, Berlin, 383–396.Google Scholar
  35. Schweiger, G., 1957. The toxic action of heavy metal salts on fish and organisms on which fish feed. Arch. Fisch Wiss.8, 54–78.Google Scholar
  36. Thurberg, F. P., Dawson, M. A. &Lollier, R. S., 1973. Effects of copper and cadmium on osmoregulation and oxygen consumption in two species of estuarine crabs. Mar. Biol.23, 171–175.Google Scholar
  37. Vernberg, W. B. &O'Hara, J., 1972. Temperature-salinity stress and mercury uptake in the fiddler crab,Uca pugilator. J. Fish. Res. Bd Can.29, 1491–1494.Google Scholar
  38. Windom, H. L. &Smith, R. G., 1972. Distribution of cadmium, cobalt, nickel and zinc in southeastern United States continental shelf waters. Deep Sea Res.19, 727–730.Google Scholar
  39. Yager, C. M. &Harry, H. W., 1966. Uptake of heavy metal ions byTaphius glabratus, a snail host ofSchistosoma mansoni. Expl. Parasit.19, 174–182.Google Scholar
  40. Zirino, A. &Yamamoto, S., 1972. A pH-dependent model for the chemical speciation of copper, zinc, cadmium, and lead in sea water. Limnol. Oceanogr.17, 661–671.Google Scholar

Copyright information

© Biologischen Anstalt Helgoland 1974

Authors and Affiliations

  • H. von Westernhagen
    • 1
  • H. Rosenthal
    • 1
  • K. -R. Sperling
    • 1
  1. 1.Biologische Anstalt Helgoland (Zentrale)Hamburg 50Germany

Personalised recommendations