Advertisement

Communications in Mathematical Physics

, Volume 55, Issue 2, pp 149–162 | Cite as

Existence of solitary waves in higher dimensions

  • Walter A. Strauss
Article

Abstract

The elliptic equation Δu=F(u) possesses non-trivial solutions inR n which are exponentially small at infinity, for a large class of functionsF. Each of them provides a solitary wave of the nonlinear Klein-Gordon equation.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics High Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, D., Derrick, G.: Stability of time-dependent particlelike solutions in nonlinear field theories. J. Math. Phys.11, 1336–1346 (1970);12, 945–952 (1971)Google Scholar
  2. 2.
    Berger, M.S.: On the existence and structure of stationary states for a nonlinear Klein-Gordon equation. J. Funct. Anal.9, 249–261 (1972)Google Scholar
  3. 3.
    Clément, P.: Positive eigenfunctions for a class of second-order elliptic equations with strong nonlinearity (preprint)Google Scholar
  4. 4.
    Dancer, E.N.: Boundary value problems for ordinary differential equations in infinite intervals. Proc. London Math. Soc.30, 76–94 (1975)Google Scholar
  5. 5.
    Kato, T.: Growth properties of solutions of the reduced wave equation with a variable coefficient. Comm. Pure Appl. Math.12, 403–425 (1959)Google Scholar
  6. 6.
    Nehari, Z.: On a nonlinear differential equation arising in nuclear physics. Proc. Roy. Irish Acad.62, 117–135 (1963)Google Scholar
  7. 7.
    Pohozaev, S.I.: Eigenfunctions of the equation Δuf(u)=0. Sov. Math. Doklady5, 1408–1411 (1965)Google Scholar
  8. 8.
    Polya, G., Szegö, G.: Isoperimetric inequalities in mathematical physics. Princeton: University Press 1951Google Scholar
  9. 9.
    Rabinowitz, P.H.: Some aspects of nonlinear eigenvalue problems. Rocky Mtn. J. Math.3, 161–202 (1973)Google Scholar
  10. 10.
    Rabinowitz, P.H.: Variational methods for nonlinear eigenvalue problems. In: Eigenvalues of nonlinear problems. Rome: C.I.M.E., Edizioni Cremonese 1974Google Scholar
  11. 11.
    Rabinowitz, P.H.: Variational methods for nonlinear elliptic eigenvalue problems. Indiana U. Math. J.23, 729–754 (1974)Google Scholar
  12. 12.
    Strauss, W.A.: On weak solutions of semi-linear hyperbolic equations. Anais Acad. Brasil. Ciencias42, 645–651 (1970)Google Scholar
  13. 13.
    Stuart, C.A.: Battelle Inst. math. report No. 75, 1973Google Scholar
  14. 14.
    Synge, J.L.: On a certain non-linear differential equation. Proc. Roy. Irish Acad.62, 17–41 (1961)Google Scholar
  15. 15.
    Weinberger, H.: Variational methods for eigenvalue approximation. Philadelphia: SIAM 1974Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Walter A. Strauss
    • 1
  1. 1.Department of MathematicsBrown UniversityProvidenceUSA

Personalised recommendations