Advertisement

Communications in Mathematical Physics

, Volume 55, Issue 2, pp 97–112 | Cite as

Hausdorff measure and the Navier-Stokes equations

  • Vladimir Scheffer
Article

Abstract

Solutions to the Navier-Stokes equations are continuous except for a closed set whose Hausdorff dimension does not exceed two.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almgren, F.J., Jr.: Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Memoirs of the American Mathematical Society 165. Providence, R. I.: American Mathematical Society 1976Google Scholar
  2. 2.
    Federer, H.: Geometric measure theory. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  3. 3.
    Hewitt, E., Stromberg, K.: Real and abstract analysis. Berlin-Heidelberg-New York: Springer 1965Google Scholar
  4. 4.
    Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. Revised English edition. New York: Gordon and Breach 1964Google Scholar
  5. 5.
    Leray, J.: Acta Math.63, 193–248 (1934)Google Scholar
  6. 6.
    Mandelbrot, B.: Intermittet turbulence and fractal dimension kurtosis and the spectral exponent 5/3+B. In: Turbulence and Navier-Stokes equation; Lecture Notes in Mathematics 565. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  7. 7.
    Scheffer, V.: Partial regularity of solutions to the Navier-Stokes equations. Pacific J. M., to appearGoogle Scholar
  8. 8.
    Scheffer, V.: Turbulence and Hausdorff dimension. In: Turbulence and Navier-Stokes equation; Lecture Notes in Mathematics 565. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  9. 9.
    Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton: Princeton Univ. Press 1970Google Scholar
  10. 10.
    Stein, E.M., Weiss, G.L.: Introduction to fourier analysis on euclidean spaces. Princeton: Princeton Univ. Press 1971Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Vladimir Scheffer
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations