Annals of Combinatorics

, Volume 2, Issue 1, pp 43–60

Proof of the Seymour conjecture for large graphs

  • János Komlós
  • Gábor N. Sárközy
  • Endre Szemerédi
Article

DOI: 10.1007/BF01626028

Cite this article as:
Komlós, J., Sárközy, G.N. & Szemerédi, E. Annals of Combinatorics (1998) 2: 43. doi:10.1007/BF01626028

Abstract

Paul Seymour conjectured that any graphG of ordern and minimum degree of at leastk/k+1n contains thekth power of a Hamiltonian cycle. Here, we prove this conjecture for sufficiently largen.

AMS Subject Classification

05C45 

Keywords

dense graphs powers of Hamiltonian cycles 

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • János Komlós
    • 1
  • Gábor N. Sárközy
    • 2
  • Endre Szemerédi
    • 3
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA
  2. 2.Computer Science DepartmentWorcester Polytechnic InstituteWorcesterUSA
  3. 3.Computer Science DepartmentRutgers UniversityNew BrunswickUSA

Personalised recommendations