Communications in Mathematical Physics

, Volume 57, Issue 2, pp 97–110 | Cite as

Quantum detailed balance and KMS condition

  • Andrzej Kossakowski
  • Alberto Frigerio
  • Vittorio Gorini
  • Maurizio Verri
Article

Abstract

A definition of detailed balance for quantum dynamical semigroups is given, and its close connection with the KMS condition is investigated.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, G.S.: Z. Physik258, 409–422 (1973)Google Scholar
  2. 2.
    Carmichael, H.J., Walls, D.F.: Z. Physik B23, 299–306 (1976)Google Scholar
  3. 3.
    Alicki, R.: Rep. Math. Phys.10, 249–258 (1976)Google Scholar
  4. 4.
    Gorini, V., Frigerio, A., Verri, M., Kossakowski, A., Sudarshan, E.C.G.: Properties of quantum markovian master equations. Rep. Math. Phys. (to appear)Google Scholar
  5. 5.
    Ingarden, R.S., Kossakowski, A.: Ann. Phys. (N.Y.)89, 451–485 (1975)Google Scholar
  6. 6.
    Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: J. Math. Phys.17, 821–825 (1976)Google Scholar
  7. 7.
    Lindblad, G.: Commun. math. Phys.48, 119–130 (1976)Google Scholar
  8. 8.
    Kossakowski, A.: Bull. Acad. Polon. Sci. Math. (to appear)Google Scholar
  9. 9.
    Evans, D.E., Lewis, J.T.: Completely positive maps on the CCR algebras. J. Funct. Anal. (to appear)Google Scholar
  10. 10.
    Takesaki, M.: Tomita's theory of modular Hilbert algebras and its applications. Lecture notes in mathematics, Vol. 128. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  11. 11.
    Sirugue, M., Winnink, M.: Commun. math. Phys.19, 161–168 (1970)Google Scholar
  12. 12.
    Bratteli, O., Robinson, D.W.: Ann. Inst. H. Poincaré25, 139–164 (1976)Google Scholar
  13. 13.
    Sakai, S.:C*-algebras andW*-algebras. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  14. 14.
    Reed, M., Simon, B.: Methods of modern mathematical physics. Vol. II. New York: Academic Press 1975Google Scholar
  15. 15.
    Davies, E.B.: Commun. math. Phys.49, 113–129 (1976)Google Scholar
  16. 16.
    Arveson, W.B.: Acta Math.123, 141–224 (1969)Google Scholar
  17. 17.
    Kraus, K.: Ann. Phys. (N.Y.)64, 311–335 (1971)Google Scholar
  18. 18.
    Gorini, V., Kossakowski, A.: J. Math. Phys.17, 1298–1305 (1976)Google Scholar
  19. 19.
    Frigerio, A., Gorini, V.: J. Math. Phys.17, 2123–2127 (1976)Google Scholar
  20. 20.
    Davies, E.B.: Commun. math. Phys.39, 91–110 (1974)Google Scholar
  21. 21.
    Haag, R., Kastler, D., Trych-Pohlmeyer, E.: Commun. math. Phys.38, 173–193 (1974)Google Scholar
  22. 22.
    Emch, G.G.: Algebraic methods in statistical mechanics and quantum field theory. New York: Wiley-Interscience 1972Google Scholar
  23. 23.
    Sewell, G.L.: Ann. Phys. (N.Y.)85, 336–377 (1974)Google Scholar
  24. 24.
    Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  25. 25.
    Radin, C.: Commun. math. Phys.21, 291–302 (1971)Google Scholar
  26. 26.
    Evans, D.E.: Commun. math. Phys.54, 293–297 (1977)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Andrzej Kossakowski
    • 1
  • Alberto Frigerio
    • 2
    • 3
  • Vittorio Gorini
    • 2
    • 3
  • Maurizio Verri
    • 3
    • 4
  1. 1.Institute of PhysicsN. Copernicus UniversityToruńPoland
  2. 2.Istituto di Fisica dell' UniversitàMilano
  3. 3.Istituto Nazionale di Fisica Nucleare, Sezione di MilanoMilanoItaly
  4. 4.Istituto di Matematica del PolitecnicoMilano

Personalised recommendations