Osteoporosis International

, Volume 1, Issue 3, pp 129–133

Differential action of pamidronate on trabecular and cortical bone in women with involutional osteoporosis

  • G. A. Fromm
  • E. Vega
  • L. Plantalech
  • A. M. Galich
  • C. A. Mautalen
Original Article

Abstract

Since osteoporotic fractures are mainly related to the diminution of the bone mineral density (BMD), the effect of pamidronate (3-amino-1-hydroxy-propylidene) 1,1-bisphosphonate on the BMD of the spine, proximal femur and radius shaft was evaluated in an initial cohort of 35 postmenopausal women with at least one vertebral fracture due to involutional osteoporosis.

Pamidronate was given continuously during 18 months in a daily oral dose of 4.8 to 6.0 mg/kg supplemented with calcium (1 g/day).

BMD — measured by dual photon absorptiometry — increased after one year 5.3±1.0% (P<0.001) in lumbar spine and 5.3±1.5% (P<0.001) over trochanter. However no significant changes were observed in the BMD of the femoral neck, Ward's triangle or in the cortical bone of the radius shaft measured by single photon absorptiometry.

Pamidronate also decreased significantly urinary hydroxyproline-creatinine excretion after 6 months and thereafter maintained a plateau. After 18 months of treatment the diminution was 42.6±4.9% (P<0.001).

The differing effects of pamidronate on the BMD of lumbar spine and proximal femur might be ascribed to dissimilarities between the proportions of trabecular and cortical bone in these. These results suggest that pamidronate may be prescribed to prevent fractures in cases of involutional osteoporosis with a significant decrease of BMD in lumbar spine and/or trochanter.

Keywords

Bone mineral density Femoral neck Lumbar spine Pamidronate Trochanter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frijlink WB, te Velde J, Bijvoet OLM, Heynen G. Treatment of Paget's disease with (3-amino-l-hydroxypropylidene)-1,1-bisphosphonate (APD). Lancet 1979; I: 799–803.Google Scholar
  2. 2.
    Thiebaud D, Portmann L, Jaeger PH, Jacquet AF, Burckhardt P. Oral versus intravenous AHP.Bp (APD) in the treatment of hypercalcemia of malignancy. Bone 1986; 7: 247–53.Google Scholar
  3. 3.
    Devogelaer JP, Huaux JP, Nagant de Deuxchaisnes C. Bisphosphonate therapy with APD in involutional osteoporosis with vertebral crush fractures. In: Christiansen C, Johansen JS (eds) Osteoporosis, Copenhagen: Osteopres 1987; ApS, pp 950–2.Google Scholar
  4. 4.
    Valkema R, Vismans F-JFE, Papapoulos SE, Pauwels EKJ, Bijvoet OLM. Maintained improvement in calcium balance and bone mineral content in patients with osteoporosis treated with the bisphosphonate APD. Bone Miner 1989; 5: 183–92.Google Scholar
  5. 5.
    Kivirikko KI, Laitinen O, Prockop DD. Modification of specific assay for hydroxyproline in urine. Ann Biochem 1967; 19: 249–55.Google Scholar
  6. 6.
    Mautalen C, Tau C, Casco C, Fromm G. Bone mineral content in the normal population of Buenos Aires. Medicina (Buenos Aires) 1984; 44: 356–60.Google Scholar
  7. 7.
    Mautalen C, Rubin Z, Vega E, Ghiringhelli G, Fromm G. Bone mineral density of the lumbar spine and proximal femur in normal females of Buenos Aires. Medicina (Buenos Aires) 1990; 50: 25–9.Google Scholar
  8. 8.
    Mazess RB, Barden HS, Ettinger M et al. Spine and femur density using dual photon absorptiometry in US white women. Bone Miner 1987; 2: 211–19.Google Scholar
  9. 9.
    Mazess RB, Barden H, Ettinger M, Schultz E. Bone density of the radius, spine and proximal femur in osteoporosis. J Bone Min Res 1988; 3: 13–18.Google Scholar
  10. 10.
    Reid IR, King AR, Alexander CJ, Ibbertson HK. Prevention of steroid-induced osteoporosis with (3-amino-1-hydroxy-propylidene)-l-l-bisphosphonate (APD). Lancet 1988; I: 143–6.Google Scholar
  11. 11.
    Reid IR, Schooler BA, Stewart AW. Prevention of glucocorticoid induced osteoporosis. J Bone Min Res 1990; 5: 619–23.Google Scholar
  12. 12.
    Riggs BL, Wahner HW, Seeman E et al. Changes in bone density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest 1982; 70: 716–23.Google Scholar
  13. 13.
    Frost HM. Treatment of osteoporosis by manipulation of coherent bone cell population. Clin Orthop 1979; 143: 227–44.Google Scholar
  14. 14.
    Pacifici R. McMurtry C, Vered I, Rupich R, Avioli L. Coherence therapy does not prevent axial bone loss in osteoporotic women: a preliminary comparative study. J Clin Endocrinol Metab 1988; 66: 747–53.Google Scholar
  15. 15.
    Hodsman AB. Effects of cyclical therapy for osteoporosis using an oral regimen of inorganic phosphate and sodium etidronate: a clinical and bone histomorphometric study. Bone Miner 1989; 5: 201–12.Google Scholar
  16. 16.
    Storm T, Thamsborg G, Steinich T, Genant HK, Sorensen CH. Effect of intermittent cyclical etidronate therapy on bone mass and fracture rate in women with postmenopausal osteoporosis. N Engl J Med 1990; 322: 1265–71.Google Scholar
  17. 17.
    Watts NB, Harris ST, Genant HK et al. Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. N Engl J Med 1990; 323: 73–9.Google Scholar
  18. 18.
    Fromm GA, Schajowicz F, Casco C, Ghiringhelli G, Mautalen CA. The treatment of Paget's bone disease with sodium etidronate. Am J Med Sci 1979; 277: 27–37.Google Scholar
  19. 19.
    Civitelli R, Agnusdei D, Nardi P, Zacchei F, Avioli LB, Gennari C. Effects of one-year treatment with estrogens on bone mass, intestinal calcium absorption and 25-hydroxyvitamin D-l-hydroxylase reserve in postmenopausal osteoporosis. Calcif Tissue Int 1988; 42: 77–86.Google Scholar
  20. 20.
    Lindsay R, Hart DM, Clark DM. The minimum effective dose of estrogens for prevention of postmenopausal bone loss. Obstet Gynecol 1984; 63: 759–63.Google Scholar
  21. 21.
    Civitelli R, Gonnelli S, Zacchei F et al. Bone turnover on postmenopausal osteoporosis. Effect of calcitonin treatment. J Clin Invest 1988; 82: 1268–74.Google Scholar
  22. 22.
    Devogelaer JP, Nagant de Deuxchaisnes C, Lecart C, Donnez J, Thomas K. Efficacy of a nasal spray of salmon calcitonin in halting bone loss at the lumbar spine in patients after oophorectomy. J Bone Min Res 1989; 4 (Suppl 1): S 395, abstract N: 1112.Google Scholar
  23. 23.
    Raymakers JA, van Dijke CF, Hoekstra A, Duursma SA. Monitoring of fluoride therapy in osteoporosis by dual photon absorptiometry. Bone 1987; 8: 143–8.Google Scholar
  24. 24.
    Hodsman AB, Drost DJ. The response of bone mineral density during the treatment of osteoporosis with sodium fluoride. J Clin Endocrinol Metab 1989; 69: 932–8.Google Scholar
  25. 25.
    Editorial. New treatments for osteoporosis. Lancet 1990; 335: 1065–6.Google Scholar
  26. 26.
    Mautalen C, Vega E, Ghiringhelli G, Fromm G. Bone diminution of osteoporotic females at different skeletal sites. Calcif Tissue Int 1990; 46: 356–60.Google Scholar
  27. 27.
    Sernbo I, Johnell O. Changes in bone mass and fracture type in patients with hip fractures. Clin Orthop 1989; 238: 139–47.Google Scholar
  28. 28.
    Finsen V, Benum P. The second hip fracture. An epidemiologic study. Acta Orthop Scand 1986; 57: 431–3.Google Scholar

Copyright information

© European Foundation for Osteoporosis 1991

Authors and Affiliations

  • G. A. Fromm
    • 1
  • E. Vega
    • 2
  • L. Plantalech
    • 1
  • A. M. Galich
    • 1
  • C. A. Mautalen
    • 2
  1. 1.Department of EndocrinologyHospital ItalianoBuenos Aires
  2. 2.Laboratorio de Osteopatias MédicasHospital de ClinicasBuenos AiresArgentina

Personalised recommendations