Osteoporosis International

, Volume 7, Issue 1, pp 7–22

The role of ultrasound in the assessment of osteoporosis: A review

  • C. F. Njeh
  • C. M. Boivin
  • C. M. Langton
Review Article


Osteoporosis is now being recognized as a “silent epidemic” and there is an increasing need to improve its diagnosis and management. Quantitative ultrasound (QUS) measurement [broadband ultrasound attenuation (BUA) and velocity] is emerging as an alternative to photon absorptiometry techniques in the assessment of osteoporosis. The fundamental principles governing ultrasound measurements are discussed, and some of the commercially available clinical systems are reviewed, particularly in relation to data acquisition methods. A review of the published in vivo and in vitro data is presented. The general consensus is that ultrasound seems to provide structural information in addition to density. The diagnostic sensitivity of ultrasound measurement of the calcaneus in the prediction of hip fracture has been shown by recent large prospective studies to be similar to hip bone mineral density (BMD) measured with dual-energy X-ray absorptiometry (DXA) and superior to spine BMD. Ultrasound has also been shown to correlate better with the type of hip fracture (intertrochanteric or cervical) than BMD and to provide comparable diagnostic sensitivity to spine BMD in vertebral fractures. It has also been observed that combining the results of both ultrasound and DXA BMD significantly improved hip fracture prediction. Areas where further research is required are identified.


Bone mineral density (BMD) Bone structure Broadband ultrasound attenuation (BUA) Fracture Osteoporosis Speed of sound (SOS) Quantitative ultrasound (QUS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stevenson JC, Whitehead MI. Postmenopausal osteoporosis. BMJ 1982;285:585–8.Google Scholar
  2. 2.
    Tothill P. Methods of bone mineral measurements. Phys Med Biol 1989;34:543–72.Google Scholar
  3. 3.
    Sim LH, van Doom T. Radiographic measurement of bone mineral: reviewing dual-energy X-ray absorptiometry. Aust Phys Eng Sci Med 1995;18:65–80.Google Scholar
  4. 4.
    Alhava ME. Bone density measurement. Calcif Tissue Int 1991;(suppl) 49:S21–3.Google Scholar
  5. 5.
    Lang P, Steiger P, Faulkner K, Gluer C, Genant HK. Current techniques and recent developments in quantitative bone densitometry. Radiol Clin North Am 1991;29:49–76.Google Scholar
  6. 6.
    Ostlere SJ, Gold RH. Osteoporosis and bone density measurement methods. Clin Orthop 1991;271:149–63.Google Scholar
  7. 7.
    Kleerekoper M, Villaneuva AR, Stanciu J, Rao DS, Parfit AM. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fracture. Calcif Tissue Int 1985;37:594–97.Google Scholar
  8. 8.
    Mosekilde L. Sex differences in age-related loss of vertebral trabecular bone mass and structure: biomechanical consequences. Bone 1989;10:425–32.Google Scholar
  9. 9.
    Marcus R. Understanding osteoporosis. West J Med 1991;155:53–60.Google Scholar
  10. 10.
    Gluer CC, Wu CY, Genant HK. Broadband attenuation signals depend on trabecular orientation: an in-vitro study. Osteoporosis Int 1993;3:185–91.Google Scholar
  11. 11.
    Tavakoli MD, Evans JA. Dependence of the velocity and attenuation in bone on the mineral content. Phys Med Biol 1991;36:1529–37.Google Scholar
  12. 12.
    Hans D, Schott AM, Meunier PJ. Ultrasonic assessment of bone: a review. Eur J Med 1993;2:157–63.Google Scholar
  13. 13.
    Kaufman JJ, Einhorn TA. Perspectives: ultrasound assessment of bone. J Bone Miner Res 1993;8:517–24.Google Scholar
  14. 14.
    Pain HJ. The physics of vibrations and waves. Chichester: Wiley, 1985.Google Scholar
  15. 15.
    Njeh CF. The dependence of ultrasound velocity and attenuation on the material properties of cancellous bone. PhD thesis, Sheffield Hallam University, UK, 1995.Google Scholar
  16. 16.
    Breazeale MA, Cantrell JH, Heyman JS. Ultrasonic wave velocity and attenuation measurements. Methods Exp Phy 1981;19:67–135.Google Scholar
  17. 17.
    Hans D, Schott AM, Arlot ME, Sornay E, Delmas PD, Meunier PJ. Influence of anthropometric parameters on ultrasound measurements of os calcis. Osteoporosis Int 1995;5:371–6.Google Scholar
  18. 18.
    Kotzki PO, Buyck D, Hans D, Thomas E, Bonnel F, Favier F, Meunier PJ, Rossi M. Influence of fat on ultrasound measurements of the os calcis. Calcif Tissue Int 1994;54:91–5.Google Scholar
  19. 19.
    Miller CG, Herd RJM, Ramalingam T, Fogelman I Blake GM. Ultrasonic velocity measurements through the calcaneus: which velocity should be measured? Osteoporosis Int 1993;3:31–5.Google Scholar
  20. 20.
    Bamber JC, Tristam M. Diagnostic ultrasound. In: Webb S, editor. The physics of medical imaging. Bristol: Adam Hilger, 1988:319–86.Google Scholar
  21. 21.
    Kinsler LE, Frey AR, Coppens AB, Sanders JV. Fundamentals of acoustics. New York: Wiley, 1992.Google Scholar
  22. 22.
    Langton CM, Palmer SB, Porter RW. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 1984;13:89–91.Google Scholar
  23. 23.
    Wu CY, Gluer CC, Jergas M, Bendavid E, Genant HK. The impact of bone size on broadband ultrasound attenuation. Bone 1995;16:137–41.Google Scholar
  24. 24.
    Serpe LJ, Rho J. Broadband ultrasound attenuation value dependence on bone width in vitro. Phys Med Biol 1996;41:197–202.Google Scholar
  25. 25.
    Bouxsein ML, Radloff SE, Toledano TR, Hayes WC. Calcaneal ultrasound measurements are moderately correlated with trabecular bone density and independent of foot geometry. J Bone Miner Res 1994;9(Suppl 1): S208.Google Scholar
  26. 26.
    Blake GM, Herd RJM, Miller CG. Should broadband ultrasonic attenuation be normalized for the width of the calcaneus? Br J Radiol 1994;67:1206–9.Google Scholar
  27. 27.
    Vogel JM, Wasnich RD, Ross PD. The clinical relevance of calcaneus bone mineral measuremnets: a review. Bone Miner 1988;5:35–58.Google Scholar
  28. 28.
    Wasnich RD, Ross PD, Heilbrun LK, Vogel JM. Selection of the optimal skeletal site for fracture prediction. Clin Orthop 1987;216:262–9.Google Scholar
  29. 29.
    Black DM, Cummings SR, Genant HK, Nevitt MC, Palermo L, Browner W. Axial and appendicular bone density predict fractures in older women. J Bone Miner Res 1992;7:633–8.Google Scholar
  30. 30.
    Simkin A. Ultrasonic velocity along the tibial shaft as a diagnostic tool for osteoporosis and a predictor of hip fractures. Myriad Ultrasound Systems Ltd, 1993.Google Scholar
  31. 31.
    Mele R. Determinazione delle caratteristiche strutturali densitometriche del tessuto osseo mediante ultrasuoni. Atti della Societa Emiliana Romagnola Triveneta di Ortopedia e Traumatologia 1993;35(l):1–4.Google Scholar
  32. 32.
    Boivin CM, Njeh CF, Bulmer N, Lilley J, Delvin J, Emery P. Finger ultrasound in assessment of rheumatoid arthritis. In Zhonghou L et al., editors. Advances in osteoporosis. International Academic Publishers, 1995:392–3.Google Scholar
  33. 33.
    Truscott JG, Simpson M, Stewart SP, et al. Bone ultrasonic attenuation in women: reproducibility, normal variation and comparison with photon absorptiometry. Clin Phys Physiol Meas 1992;13:29–36.Google Scholar
  34. 34.
    Waud CE, Lew R, Baran DT. The relationship between ultrasound and densitometric measurements of bone mass at the calcaneus in women. Calcif Tissue Int 1992;51:415–8.Google Scholar
  35. 35.
    Evans JA, Tavakoli MB. Temperature and direction dependence of the attenuation and velocity of ultrasound in cancellous and cortical bone. In: Ring EFG, Bhalla AK editors. Current research in osteoporosis and bone measurement II. Bath: British Institute of Radiology, 1992.Google Scholar
  36. 36.
    Zagzebski J, Rossman P, Mesina C, Mazess R, Madsen E. Ultrasonic transmission measurements through the os calcis. Calcif Tissue Int 1991;49:107–11.Google Scholar
  37. 37.
    Mazess R, Trempe J, Barden H. Ultrasound measurement of the os calcis. Calcif Tissue Int 1993;52:S165.Google Scholar
  38. 38.
    Lees B, Stevenson JC. Preliminary evaluation of a new ultrasound bone densitometer. Calcif Tissue Int 1993;53:149–52.Google Scholar
  39. 39.
    Langton CM, Ali AV, Riggs CM, Evans GP, Bonfield W. A contact method for the assessment of ultrasonic velocity and broadband attenuation in cortical and cancellous bone. Clin Physiol Meas 1990;11:243–49.Google Scholar
  40. 40.
    Orgee JM, Foster H, McCloskey EV, Khan S, Coombes G, Kanis JA. A precise method for the assessment of tibial ultrasound velocity. Osteoporosis Int 1996;6:1–7.Google Scholar
  41. 41.
    Gluer CC, Wu C, Genant HK. Disparity of different BUA approaches. Calcif Tissue Int 1993;52:S171.Google Scholar
  42. 42.
    Graafmans WC, Lips P, Lingen AV, Bouter LM. Ultrasound measurements in the calcaneus: reproducibility and its relation with bone mineral density. In: Ring EFJ, Elvins DM, Bhalla AK, editors. Current research in osteoporosis and bone mineral measurements III. British Institute of Radiology, 1994:19.Google Scholar
  43. 43.
    Mazess R, Morris R, Trempe J. Recent advances in ultrasound densitometry: the Achilles Plus. Industry Forum, 11th international bone densitomerty workshop, Oregon, Sept 24–28, 1995.Google Scholar
  44. 44.
    Ramalingam T, Herd RJM, Lees B, Blake GM, Stevenson JC, Miller CG, Fogelman I. A comparison of three commercial bone ultrasound scanners (abstract). Calcif Tissue Int 1993;52:170.Google Scholar
  45. 45.
    Evans WD, Jones EA, Owen GM. Factors affecting the in vivo precision of broadband ultrasonic attenuation. Phys Med Biol 1995;40:137–51.Google Scholar
  46. 46.
    Abendschein W, Hyatt GW. Ultrasonics and selected physical properties of bone. Clin Orthop 1970;69:294–301.Google Scholar
  47. 47.
    Behari J, Singh S. Ultrasound propagation in in vivo bone. Ultrasonics 1981;81:87–90.Google Scholar
  48. 48.
    Andre MP, Craven JD, Greenfield MA. Measurement of the velocity of ultrasound in the human femur in vivo. Med Phys 1980;7:324–30.Google Scholar
  49. 49.
    Greenfield MA, Craven JD, Huddleston A, Kehrer ML, Wishko D, Stern R. Measurement of the velocity of ultrasound in human cortical bone in vivo. Radiology 1981;138:701–10.Google Scholar
  50. 50.
    Fry FJ, Barger JE. Acoustical properties of human skull. J Acoust Soc Am 1978;63:1576–90.Google Scholar
  51. 51.
    Ashman RB, Corin JD, Turner CH. Elastic properties of cancellous bone measurement by an ultrasonic technique. J Biomech 1987;20:979–86.Google Scholar
  52. 52.
    Turner CH, Eich M. Ultrasonic velocity as a predictor of strength in bovine cancellous bone. Calcif Tissue Int 1991;49:116–9.Google Scholar
  53. 53.
    Evans JA, Tavakoli MB. Ultrasonic attenuation and velocity in bone. Phys Med Biol 1990;35:1387–96.Google Scholar
  54. 54.
    Njeh CF, Hodgskinson R, Langton CM. Determination of bone strength from ultrasonic velocity and broadband ultrasound attenuation. Br J Radiol 1995;68:789.Google Scholar
  55. 55.
    Bouxsein ML, Radloff SE, Hayes WC. Quantitative ultrasound of the calcaneus reflects trabecular bone strength, modulus and morphology. J Bone Miner Res 1995; 10(Suppl 1):S175.Google Scholar
  56. 56.
    Rubin CT, Pratt GW, Porter AL, Lanyon LE, Poss R. The use of ultrasound in vivo to determine acute change in the mechanical properties of bone following intense physical activity. J Biomech 1987;20:723–7.Google Scholar
  57. 57.
    Heaney RP, Avioli LV, Chestnut CH, Lappe J, Rescker RR, Brandenburger GH. Osteoporotic bone fragility, detection by ultrasound transmission velocity. JAMA 1989;261:2986–90.Google Scholar
  58. 58.
    Rossman P, Zagzebski J, Mesina C, Sorenson J, Mazess R. Comparison of speed of sound and ultrasound attenuation in the os calcis to bone density of the radius, femur and lumbar spine. Clin Physiol Meas 1989;10:353–60.Google Scholar
  59. 59.
    Turner CH, Peacock M, Timmerman L, Neal JM, Johnston CC Jr. Calcaneal ultrasonic measurements discriminate hip fractures independently of bone mass. Osteoporosis Int 1995;5 130–5.Google Scholar
  60. 60.
    Schott AM, Weill-Engerer S, Hans D, Duboeuf F, Delmas PD, Meunier PJ. Ultrasound discriminates patients with hip fracture equally well as dual-energy X-ray absorptiometry and independently of bone mineral density. J Bone Miner Res 1995;10:243–9.Google Scholar
  61. 61.
    Wuster C, Paetzold W, Scheidt-Nave C, Brandt K, Ziegler R. Equivalent diagnostic validity of ultrasound and dual x-ray absorptiometry in a clinical case-comparison study of women with vertebral osteoporosis. J Bone Miner Res 1994;9(Suppl 1):S211.Google Scholar
  62. 62.
    Gonnelli S, Cepollaro C, Agnusdei D, Palmieri R, Rossi S, Gennari C. Diagnostic value of ultrasound analysis and bone densitometry as predictors of vertebral deformity in postmenopausal women. Osteoporosis Int 1995;5:413–8.Google Scholar
  63. 63.
    Stegman MR, Heaney RP, Recker RR. Comparison of speed of sound ultrasound with single photon absorptiometry for determining odds ratio. J Bone Miner Res 1995;10:346–52.Google Scholar
  64. 64.
    Heaney RP, Avioli LV, Chesnut CH, Lappe J, Recker RR, Brandenburger GH. Ultrasound velocity through bone predicts incident vertebral deformity. J Bone Miner Res 1995;10:341–5.Google Scholar
  65. 65.
    Stegman MR, Heaney RP, Travers-Gustafson D, Leist J. Cortical ultrasound velocity as an indicator of bone status. Osteoporosis Int 1995;5:349–53.Google Scholar
  66. 66.
    Orgee J, McCloskey EV, Foster H, Coombes G, Khan S, Kanis JA. Tibial ultrasound velocity: a useful clinical measure of skeletal status. J Bone Miner Res 1994;9:S156.Google Scholar
  67. 67.
    Hans D, Dargent P, Schott AM, et al. Ultrasound parameters predict hip fracture independently of hip bone density: the EPIDOS prospective study. J Bone Miner Res 1995; 10(Suppl): S169.Google Scholar
  68. 68.
    Garcia BJ, Foster FS, McNeill RG. Ultrasonics attenuation in bone. Ultrasonics symposium proceedings, 1978:327–30Google Scholar
  69. 69.
    Smith SW, Phillips DJ, Von Ramm OT, Thurstone FL. Some advances in acoustic imaging through the skull: In: Linzer M, editor. Ultrasonic tissue characterization II. Washington: National Bureau of Standards Special Publication 525:1979:209–217.Google Scholar
  70. 70.
    McCloskey EV, Murray SA, Charlesworth D, et al. Assessment of broadband attenuation in the os calcis in vitro. Clin Sci 1990;78:221–5.Google Scholar
  71. 71.
    McKelvie ML, Fordham J, Clifford C, Palmer SW. In vitro comparison of quantitative computer tomography and broadband ultrasonic attenuation of trabecular bone. Bone 1989;10:101–4.Google Scholar
  72. 72.
    Langton CM, Njeh CF, Hodgskinson R, Currey JD. Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation. Bone 1996;18:495–503.Google Scholar
  73. 73.
    Bouxsein ML, Courtney AC, Hayes WC. Ultrasound and densitometry of the calcaneus correlate with the failure loads of cadaveric femurs. Calcif Tissue Int 1995;56:99–103.Google Scholar
  74. 74.
    Ross P, Huang C, Davis J, et al. Predicting vertebral deformity using bone densitometry at various skeletal sites and calcaneus ultrasound. Bone 1995;16:325–32.Google Scholar
  75. 75.
    Kleerekoper M, Nelson DA, Flynn MJ, Pawluszka AS, Jacobsen G, Peterson EL. Comparison of radiographic absorptiometry with dual-energy X-ray absorptiometry and quantitative computed tomography in normal older white and black women. J Bone Miner Res 1994;9:1745–9.Google Scholar
  76. 76.
    Gluer CC, Vahlensieck M, Faulkner KG, Engelke K, Black D, Genant HK. Site-matched calcaneal measurement of broadband ultrasound attenuation and single X-ray absorptiometry: do they measure different skeletal properties? J Bone Miner Res 1992;7:1071–9.Google Scholar
  77. 77.
    Brandenburger GH. Clinical determination of bone quality: is ultrasound an answer? Calcf Tissue Int 1993;53(Suppl 1):S151–6.Google Scholar
  78. 78.
    Faulkner KG, McClung MR, Coleman LJ, Kingston-Sandahl E. Quantitative ultrasound of the heel: Correlation with densitometric measurements at different skeletal sites. Osteoporosis Int 1994;4:42–7.Google Scholar
  79. 79.
    Armitage P, Berry G. Statistical methods in medical research. Oxford: Blackwell Scientific Publications, 1987.Google Scholar
  80. 80.
    Langton CM. The role of ultrasound in the assessment of osteoporosis. Clin Rheumatol, 1994;13(Suppl 1): 13–7.Google Scholar
  81. 81.
    Resch H, Pietschmann P, Bernecker P, Krexner E, Wilvonseda R. Broadband ultrasound attenuation: a new diagnostic method in osteoporosis. AJR 1990;155:825–8.Google Scholar
  82. 82.
    Herd RJM, Ramalingham T, Ryan PJ, Fogelman I, Blake GM. Measurements of BUA in the calcaneus in premenopausal and postmenopausal women. Osteoporosis Int 1992;2:247–51.Google Scholar
  83. 83.
    Damilakis JE, Drekatis E, Courtsoyiannis NC. Ultrasound attenuation of the calcaneus in female population: normative data. Calcif Tissue Int 1992;51:180–3.Google Scholar
  84. 84.
    Baran DT, Kelly AM, Karellas A, et al. Ultrasonic attenuation of the os calcis in women with osteoporosis and hip fractures. Calcif Tissue Int 1988;43:138–42Google Scholar
  85. 85.
    McCloskey EV, Murray SA, Miller C, et al. Broadband ultrasound attenuation in the os calcis: relationship to bone mineral at other skeletal sites. Clin Sci 1990;78:227–33.Google Scholar
  86. 86.
    Agren M, Karellas A, Leahey D, Marks S, Baran DT. Ultrasound attenuation of the calcaneus: a sensitive and specific discriminator of osteopenia in postmenopausal women. Calcif Tissue Int 1991;48:240–4.Google Scholar
  87. 87.
    Funke M, Kopka L, Vosshenrich R, Fischer U, Ueberschaer A, Oestmann JW, Grabbe E. Broadband ultrasound attenuation in the diagnosis of osteoporosis: correlation with osteodensitometry and fracture. Radiology 1995;194:77–81.Google Scholar
  88. 88.
    Stewart A, Reid DM, Porter RW. Broadband ultrasound attenuation and dual energy X-ray absorptiometry in patients with hip fractures: which technique discriminates fracture risk? Calcif Tissue Int 1994;54:466–9.Google Scholar
  89. 89.
    Orwoll ES, Oviatt SK, Mann T. The impact of osteophytic and vascular calcification on vertebral mineral density measurement in men. J Clin Endocrinol Metab 1990;70:1202–7.Google Scholar
  90. 90.
    Stewart A, Felsenberg D, Kalidis L, Reid DM. Vertebral fractures in men and women: how discriminative are bone mass measurements? Br J Radiol 1995;68:614–20.Google Scholar
  91. 91.
    Bauer DC, Gluer CC, Genant HK, Stone K. Quantitative ultrasound and vertebral fracture in postmenopausal women. J Bone Miner Res 1995;10:353–8.Google Scholar
  92. 92.
    Dretakis EC, Kontakis GM, Steriopoulos CA, Dretakis CE. Decreased broadband ultrasound attenuation of the calcaneus in women with fragility fracture. Acta Orthop Scand 1994;65:305–8.Google Scholar
  93. 93.
    Kroger H, Jurvelin J, Amala I, et al. Ultrasound attenuation of the calcaneus in normal subjects and in patients with wrist fracture. Acta Orthop Scand 1995;66:47–52.Google Scholar
  94. 94.
    Porter RW, Miller CG, Grainger D, Palmer SB. Prediction of hip fracture in elderly women: a prospective study. BMJ 1990;301:638–41.Google Scholar
  95. 95.
    Bauer DC, Gluer CC, Pressman AR, et al. Broadband ultrasonic attenuation (BUA) and the risk of fracture: a prospective study. J Bone Miner Res 1995;10(Suppl 1):S175.Google Scholar
  96. 96.
    Gluer CC, Fuerst T, Wu CY, et al. Diagnostic sensitivity of various quantitative ultrasound and dual x-ray absorptiometry approaches. J Bone Miner Res 1995, 10(Suppl 1):S373.Google Scholar
  97. 97.
    Fordham JN, Langton CM, Tulsidas H. Ultrasonic measurements of bone density in rheumatoid arthritis and osteoarthritis. In: Palmer SB, Langton CM, editors. Ultrasonic studies of bone. Bristol: IOP Publication, 1987:47–53.Google Scholar
  98. 98.
    Nijs J, Boonen S, Geusens P, Borghs H, Dequeker J. Ultrasound in osteoarthritis and osteoporosis. In: Ring EF, Elvins DM, Bhalla AK, editors. Current research in osteoporosis and bone mineral measurement III. Bath: British Institute of Radiology, 1994:45.Google Scholar
  99. 99.
    Acotto CG, Schott AM, Hans D, Njepomniszeze H, Mautalen CA, Meunier PJ. Hyperthyroidism influences ultrasound bone measurements of the calcaneus. J Bone Miner Res 1995; 10(Suppl 1):S400.Google Scholar
  100. 100.
    Jones PRM, Hardman AE, Hudson A, Norgan NG. Influence of brisk walking on the broadband ultrasonic attenuation of the calcaneus in previously sedentary women aged 30–61 years. Calcif Tissue Int 1991;49:112–5.Google Scholar
  101. 101.
    Herd RJM, Blake GM, Ramalingham T, Miller CG, Ryan PJ, Fogelman I. Measurements of postmenopausal bone loss with a new contact ultrasound system. Calcif Tissue Int 1993;53:153–7.Google Scholar
  102. 102.
    Rosenthall L, Tenenhouse A, Caminis J. A correlative study of ultrasound calcaneal and dual-energy x-ray absorptiometry bone measurements of the lumbar spine and femur in 100 women. Eur J Nucl Med 1995;22:402–6.Google Scholar
  103. 103.
    Langton CM, Evans GP, Hodgskinson R Riggs CM. Ultrasonic, elastic and structural properties of cancellous bone. In: Ring EFG, editor. Current research in osteoporosis and bone mineral measurement. Bath: British Institute of Radiology, 1990.Google Scholar
  104. 104.
    Nicholson PHF, Haddaway MJ, Davie MW. The dependence of ultrasonic properties on orientation in human vertebral bone. Phys Med Biol 1994;39:1013–24Google Scholar
  105. 105.
    Tavakoli MB, Evans JA. The effect of bone structure on ultrasonic attenuation and velocity. Ultrasonics 1992;30:389–95.Google Scholar
  106. 106.
    Hans D, Arlot ME, Shott AM, Roux JP, Kotzki PO, Meunier PJ. Do ultrasound measurements on the os calcis reflect more bone microarcitecture than the bone mass? A two-dimensional histomorphometric study. Bone 1995;16:295–300.Google Scholar
  107. 107.
    Gluer CC, Wu CY, Jergas M, Goldstein SA, Genant HK. Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int 1994;55:46–52.Google Scholar
  108. 108.
    Laugier P, Giat P, Berger G. New ultrasonic methods of quantitative assessment of bone status. Eur J Ultrasound 1994;1:23–38.Google Scholar
  109. 109.
    Petley GW, Robins PA, Aindow JD. Broadband ultrasonic attenuation: are current measurement techniques inherently inaccurate? Br J Radiol 1995;68:1212–4.Google Scholar
  110. 110.
    Laugier P, Giat P, Berger G. Broadband ultrasonic attenuation imaging: a new imaging technique of the os calcis. Calcif Tissue Int 1994;54:83–6.Google Scholar
  111. 111.
    Roux C, Fournier B, Laugier P, et al. Ultrasound bone imaging: clinical evaluation of skeletal status. Osteoporosis Int 1996;6:84.Google Scholar
  112. 112.
    Langton CM. Electronic phantom for the ultrasonic assessment of bone. Osteoporosis Int 1996;6:87.Google Scholar
  113. 113.
    Njeh CF, Langton CM. Prediction of bone strength from ultrasound velocity and apparent density. Osteoporosis Int 1996;6:83.Google Scholar
  114. 114.
    Hans D, Dargent P, Schott AM et al. Which ultrasound parameters could be combined with DXA to provide a better prediction of hip fracture in the elderly? The EPIDOS prospective study. Osteoporosis Int 1996;6:84.Google Scholar
  115. 115.
    Gnudi S, Malavolta N, Ripamonti C, Caudarella R. Ultrasound in the evaluation of osteoporosis: a comparison with bone mineral density at distal radius. Br J Radiol 1995;68:476–80.Google Scholar
  116. 116.
    Wapniarz M, Lehmann R, Banik N, Radwan M, Klein K, Allolio B. Apparent velocity of ultrasound (AVU) at the patella in comparison to bone mineral density at the lumbar spine in normal males and females. Bone Miner 1993;23:243–52.Google Scholar
  117. 117.
    Fujii Y, Goto B, Takahashi K, Fujita T. Ultrasound transmission as a sensitive indicator of bone change in Japanese women in the perimenopausal period. Bone Miner 1994;25:93–101.Google Scholar
  118. 118.
    Foldes AJ, Rimon A, Keinan DD, Popovtzer MM. Quanitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone 1995;17:363–7.Google Scholar
  119. 119.
    Herd RJM, Blake GM, Miller CG, Parker JC, Fogelman I. The ultrasonic assessment of osteopenia as defined by dual x-ray absorptiometry. Br J Radiol 1994;67:631–5.Google Scholar
  120. 120.
    Schott AM, Hans D, Sornay-Rendu E, Delmas PD, Meunier PJ. Ultrasound measurements on os calcis: precision and age-related changes in a normal female population. Osteoporosis Int 1993;3:249–54.Google Scholar
  121. 121.
    Salamone LM, Krall EA, Harris S, Dawson-Hughes B. Comparison of broadband ultrasound attenuation to single x-ray absorptiometry measurements at the calcaneus in postmenopausal women. Calcif Tissue Int 1994;54:87–90.Google Scholar
  122. 122.
    Evans WD, Crawley EO, Compston JE, Evans C, Owen GM. Broadband ultrasonic attenuation and bone mineral density (letter). Clin Phys Meas 1988;9:163–5Google Scholar
  123. 123.
    Petley GW, Hames TK, Cooper C Langton CM, Cawley MD. A comparison of single photon absorptiometry and broadband ultrasonic attenuation: past, present and future. In: Palmer SB, Langton CM, editors. Ultrasonics studies of bone. Institute of Physics Short Meetings no. 6, 1987.Google Scholar
  124. 124.
    Hosie CJ, Smith DA, Deacon AD, Langton CM. Comparison of broadband ultrasonic attenuation of the os calcis and quantitative computed tomography of the distal radius. Calcif Tissue Int 1987;48:303–8.Google Scholar
  125. 125.
    Poll V, Cooper C, Cawley MID. Broadband ultrasonic attenuation in the os calcis and single photon absorptiometry in the distal forearm: a comparative study. Clin Phys Physiol Meas 1986;7:375–9.Google Scholar
  126. 126.
    Massie A, Reid DM, Porter RW. Screening for osteoporosis: comparison between dual-energy X-ray absorptiometry and broadband ultrasound atenuation in 100 perimenopausal women. Osteoporosis Int 1993;3:107–10.Google Scholar
  127. 127.
    Young A, Howey S, Purdie DW. Broadband ultrasound attenuation compared with dual-energy X-ray absorptiometry in screening for postmenopausal low bone density. Osteoporosis Int 1993;3:160–4.Google Scholar
  128. 128.
    Baran DT, McCarthy CK, Leahey D, Lew R. Broadband ultrasound attenuation of the calcaneus predicts lumbar and femoral neck density in Caucasian women: a preliminary study. Osteoporosis Int 1991;1:110–3.Google Scholar

Copyright information

© European Foundation for Osteoporosis and the National Osteoporosis Foundation 1997

Authors and Affiliations

  • C. F. Njeh
    • 1
  • C. M. Boivin
    • 1
  • C. M. Langton
    • 2
  1. 1.Medical Physics DepartmentUniversity Hospital Birmingham NHS TrustBirminghamUK
  2. 2.Centre for Metabolic Bone Disease, Hull Royal InfirmaryRoyal Hull Hospitals NHS Trust and University of HullHullUK
  3. 3.Bone Densitometry Services, Medical Physics DepartmentQueen Elizabeth HospitalBirminghamUK

Personalised recommendations