Archive for Mathematical Logic

, Volume 29, Issue 3, pp 201–211 | Cite as

Working below a low2 recursively enumerably degree

  • Richard A. Shore
  • Theodore A. Slaman


Mathematical Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fejer, P.A., Shore, R.A.: Embeddings and extension of embeddings in the r.e. tt- and wtt-degrees. In: Ebbinghaus, H.D. et al. (eds.) Recursion theory week. Berlin: Springer 1985 (Lect. Notes Math., vol. 1141), pp. 121–140)Google Scholar
  2. Harrington L., Slaman, T.: An interpretation of arithmetic in the theory of the furing degrees of the recursively enumerable sets. (1990, in preparation)Google Scholar
  3. Lachlan, A.H.: Decomposition of recursively enumerable degrees. Proc. Am. Math. Soc.79, 629–634 (1980)Google Scholar
  4. Ladner, R.E., Sasso, L.P.: The weak truth table degrees of recursively enumerable sets. Ann. Math. Logic8, 429–448 (1975)Google Scholar
  5. Lerman, M.: Degrees of unsolvability. Berlin: Springer, 1983Google Scholar
  6. Robinson, R.W.: Interpolation and embedding in the recursively enumerable degrees. Ann. Math. II. Ser.93, 586–596 (1971)Google Scholar
  7. Shore, R.A.: On the ∀∃-sentences of α-recursion theory. In: Fenstad, J.E., Gandy, R.O., Sacks, G.E. (eds.) Generalized recursion theory II. Amsterdam: North-Holland, pp. 331–354, 1978Google Scholar
  8. Shore, R.A.: Defining jump classes in the degrees below 0. Proc. Am. Math. Soc.104, 287–292 (1988)Google Scholar
  9. Shore, R.A., Slaman, T.: Working below a high recursively enumerable degree (1990)Google Scholar
  10. Shore, R.A., Slaman, T.: Splitting and density cannot be combined below any high r.e. degree (1991)Google Scholar
  11. Soare, R.I.: Recursively enumerable sets and degrees. Berlin: Springer, 1987Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Richard A. Shore
    • 1
  • Theodore A. Slaman
    • 2
  1. 1.Department of MathematicsCornell UniversityIthacaUSA
  2. 2.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations