Journal of clinical monitoring

, Volume 2, Issue 3, pp 174–189 | Cite as

History of blood gas analysis. V. Oxygen measurement

  • John W. Severinghaus
  • Poul B. Astrup
Historical Review


The first biologic use of a platinum cathode for oxygen monitoring was reported in 1938 by Blinks and Skow, who were studying photosynthesis. Their report led to the tissue oxygen studies of Davies, Brink, and Bronk. Clark, by covering cathode and anode with a polyethylene membrane, changed the polarographic cathode from a sensor of oxygenavailability by diffusion to a measure of oxygentension (Po2) in the solution and thereby facilitated an enormous expansion of the study of the respiratory physiology of blood oxygen after 1956. Clark's electrode led to the development of the present commercial blood gas systems that measure pH, carbon dioxide tension (Pco2), and Po2 and calculate many derived variables. Variations on Clark's electrode were designed for in vivo catheter-tip recording; gas phase oxygen monitoring; determining oxygen content of blood by releasing hemoglobin-bound oxygen and measuring Po2; and determining oxygen consumption in cell cultures (thus replacing Warburg manometry). By reducing the cathode diameter, Staub and others eliminated the need for stirring the blood samples. Concurrent research with amperometric or polarographic oxygen measurement led Hersch to develop the means of determining oxygen content by coulometry in large cells that consumed all the injected oxygen. Methods of applying noninsulating, but protein impermeable, membranes to cathodes and of recessing cathodes into glass permitted measurement of Po2 in tissues and fluids with microelectrodes.

Key words

Measurement techniques polarography Oxygen sensors cathodes content measurement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Severinghaus JW, Astrup P. History of blood gas analysis. IV. Leland Clark's oxygen electrode. J Clin Monit 1986;2:125–139PubMedCrossRefGoogle Scholar
  2. 2.
    Blinks LR, Skow RK. The time course of photosynthesis as shown by the glass electrode, with anomalies in the acidity changes. Proc Natl Acad Sci USA 1938;24:413–419PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Tang PS, Lin CY. Studies on the kinetics of cell respiration. J Cell Comp Physiol 1936;9:149–163CrossRefGoogle Scholar
  4. 4.
    Blinks LR, Skow RK. The time course of photosynthesis as shown by a rapid electrode method for oxygen. Proc Natl Acad Sci USA 1938;24:420–427PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kreuzer F. A new polarographic procedure for measuring the blood oxygen tension in vitro. Experientia 1957;13:300PubMedCrossRefGoogle Scholar
  6. 6.
    Severinghaus JW, Astrup PB. History of blood gas analysis. III. Carbon dioxide tension. J Clin Monit 1986;2:60–73PubMedCrossRefGoogle Scholar
  7. 7.
    Kreuzer F, Watson TR Jr, Ball JM. Comparative measurements with a new procedure for measuring blood O2 tension in vitro. J Appl Physiol 1958;12:65–70PubMedGoogle Scholar
  8. 8.
    Kreuzer F, Nessler CG Jr. Method of polarographic in vivo continuous recording of blood oxygen tension. Science 1958;128:1005–1006PubMedCrossRefGoogle Scholar
  9. 9.
    Kreuzer F, Harris ED Jr, Nessler CG Jr. A method for continuous recording in vivo of blood O2 tension. J Appl Physiol 1960;15:77–82PubMedGoogle Scholar
  10. 10.
    Kreuzer F, Rogeness GA, Bornstein P. Continuous recording in vivo of respiratory air oxygen tension. J Appl Physiol 1960;15:1157–1158PubMedGoogle Scholar
  11. 11.
    Kimmich HP, Kreuzer F. Telemetry of respiratory oxygen pressure in man during exercise. Digest 7th Inst Conf Med Biol Eng. Stockholm, Sweden 1967; paper 3–8, p 90Google Scholar
  12. 12.
    Kreuzer F, Kimmich HP, Brezina M. Polarographic determination of oxygen in biological materials. In: Koryta J, ed. Medical and biological applications of electrochemical devices. New York: Wiley, 1980:173–261Google Scholar
  13. 13.
    Sproule BJ, Miller WF, Cushing IE, Chapman CB. An improved polarographic method for measuring oxygen tension in whole blood. J Appl Physiol 1957;11:365–370PubMedGoogle Scholar
  14. 14.
    Rooth G, Sjöstedt S, Caligara F. Oxygen tension measurements in whole blood with the Clark cell. Clin Sci 1959;18:379–386PubMedGoogle Scholar
  15. 15.
    Bishop JM, Pincock AC. A method of measuring oxygen tension in blood and gas using a covered platinum electrode. J Physiol 1958;145:20P-21PGoogle Scholar
  16. 16.
    Gleichmann U, Lübbers DW. Die Messung des Sauerstoffdruckes in Gasen und Fleussigkeiten mit der Platin-Elektrode unter besonderer Bereucksichtigung der Messung im Blut. Pflugers Arch Gesamte Physiol 1960;271:431–471CrossRefGoogle Scholar
  17. 17.
    Finley TN, Lenfant C, Haab P, et al. Venous admixture in the pulmonary circulation of anesthetized dogs. J Appl Physiol 1960;15:418–424PubMedGoogle Scholar
  18. 18.
    Reeves RB, Rennie DW, Pappenheimer JR. Oxygen tension of urine and its significance. Fed Proc 1957;16:693–700PubMedGoogle Scholar
  19. 19.
    Miller WF, Sproule BJ, Cushing IE. A study of the nature of arterial oxygen lack using an improved rapid method of measuring oxygen tension. Am Rev Tuberc 1959;79:315–321PubMedGoogle Scholar
  20. 20.
    Polgar G, Forster RE. Measurement of O2 tension in unstirred blood with a platinum electrode. J Appl Physiol 1960;15:706–711PubMedGoogle Scholar
  21. 21.
    Eberhard P, Mindt W, Jann F, Hammacher K. Continuous Po2 monitoring in the neonate by skin electrodes. Med Biol Eng 1975;13:436–442PubMedCrossRefGoogle Scholar
  22. 22.
    Bartels H, Reinhardt W. Einfache Methode zur Sauerstoffdruckmessung im Blut mit einer Kunststoffuberzogenen Platinelektrode. Pflugers Arch Gesamte Physiol 1960;272:105–114CrossRefGoogle Scholar
  23. 23.
    Daly JJ, White JM, Bamforth J. The polarographic measurement of oxygen tension in blood using a polystyrene coated platinum electrode. Clin Sci 1963;24:413–415PubMedGoogle Scholar
  24. 24.
    Staub NC. A simple small oxygen electrode. J Appl Physiol 1961;16:192–194Google Scholar
  25. 25.
    Staub NC. Alveolar arterial oxygen tension gradient due to diffusion. J Appl Physiol 1963;18:673–680PubMedGoogle Scholar
  26. 26.
    Adams JE, Severinghaus JW. Oxygen tension of human cerebral gray and white matter. J Neurosurg 1962;19:959–963PubMedCrossRefGoogle Scholar
  27. 27.
    Charlton G. A microelectrode for determination of dissolved oxygen in tissues. J Appl Physiol 1961;16:729–733PubMedGoogle Scholar
  28. 28.
    Thews G. Ein Mikronalyseverfahren zur Bestimmung der Sauerstoffdrucke in kleinen Blutproben. Arch Ges Physiol 1962;276:89–98CrossRefGoogle Scholar
  29. 29.
    Fatt I. An ultramicro oxygen electrode. J Appl Physiol 1964;19:326–329PubMedGoogle Scholar
  30. 30.
    Schneiderman G, Goldstick TK. Oxygen electrode design criteria and performance characteristics: recessed cathode. J Appl Physiol 1978;45:145–154PubMedGoogle Scholar
  31. 31.
    Linek V, Sinkule J. Oxygen electrode dynamics: three-layer model—chemical reaction in the liquid film. Biotechnol Bioeng 1983;25:1401–1418PubMedCrossRefGoogle Scholar
  32. 32.
    Fatt I. Rapidly responding carbon dioxide and oxygen electrodes. J Appl Physiol 1964;19:550–553PubMedGoogle Scholar
  33. 33.
    Butler RA, Nunn JF, Askill S. Coiled cathode oxygen polarograph. Nature 1962;196:781–782PubMedCrossRefGoogle Scholar
  34. 34.
    Saito Y. A sputtered Pt film electrode for polarographic O2 measurement. J Appl Physiol 1967;23:979–983PubMedGoogle Scholar
  35. 35.
    Schuler R, Kreuzer F. Rapid polarographic in vivo oxygen catheter electrodes. Respir Physiol 1967;3:90–110PubMedCrossRefGoogle Scholar
  36. 36.
    Meredith JH, Artesani JH, Mamlin JH. Temperature compensated self-calibrated oxygen monitoring device. J Thorac Cardiovasc Surg 1960;40:582–587PubMedGoogle Scholar
  37. 37.
    Krog J, Johanson K. Construction and characteristics of Teflon covered polarographic electrode for intravascular oxygen determinations. Rev Sci Instrum 1959;30:108–109CrossRefGoogle Scholar
  38. 38.
    Charlton G, Read D, Reed J. Continuous intra-arterial Po2 in normal man using a flexible microelectrode. J Appl Physiol 1963;18:1247–1251PubMedGoogle Scholar
  39. 39.
    Montgomery V, Paton BC, Lucero J, Swan H. The design of monitoring devices for use with a pumpoxygenator. J Thorac Cardiovasc Surg 1960;39:225–233PubMedGoogle Scholar
  40. 40.
    Said SI, Davis RK, Crosier JL. Continuous recording in vivo of arterial blood Po2 in dogs and in man. J Appl Physiol 1961;16:1129–1132PubMedGoogle Scholar
  41. 41.
    Sommerkamp H, Ochmig H. Herzkatheter mit kunststoffüberzogener Platinelektrode zur fortlaufenden Sauerstoffdruckmessung im stroemenden Blute. Klin Wochenschr 1962;40:1112–1113PubMedCrossRefGoogle Scholar
  42. 42.
    Parker D, Key A, Davies RS. Catheter tip transducer for continuous in vivo measurement of oxygen tension. Lancet 1971;1:952–953PubMedGoogle Scholar
  43. 43.
    Jansen TC, Lafeber HN, Visser HKA, et al. Construction and performance of a new catheter-tip oxygen electrode. Med Biol Eng Comput 1978;16:274–277PubMedCrossRefGoogle Scholar
  44. 44.
    Lundsgaard JS, Jensen B, Grønlund J. Fast-responding flow-independent blood gas catheter for oxygen measurement. J Appl Physiol 1980;48:376–381PubMedGoogle Scholar
  45. 45.
    Nilsson E, Edwall G, Larsson R, Olsson P. Polarographic Po2 sensors with heparinized membranes for in vitro and continuous in vivo registration. Scand J Clin Lab Invest 1981;41:557–563PubMedCrossRefGoogle Scholar
  46. 46.
    Nilsson E, Edwall G, Larsson R, Olsson P. Continuous intra-arterial Po2 monitoring with a surface-heparinized catheter electrode. Scand J Clin Lab Invest 1982;42:331–338PubMedGoogle Scholar
  47. 47.
    Nilsson E, Arnander C. Long-term monitoring of arterial Po2 in burned patients. Clin Physiol 1984;4:13–21PubMedCrossRefGoogle Scholar
  48. 48.
    Tsao MU, Vadnay A. An electrode for continuous measurement of transient blood Po2 in the vessel. J Appl Physiol 1960;15:712–716PubMedGoogle Scholar
  49. 49.
    Koeff ST, Tsao MU, Vadnay A, et al. Continuous measurement of intravascular oxygen tension in normal adults. J Clin Invest 1962;41:1125–1129PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Finley TN. The determination of uneven pulmonary blood flow from the arterial oxygen tension during nitrogen washout. J Clin Invest 1961;40:1727–1734PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Meyer JS, Gotoh F, Tazaki Y. Continuous recording of arterial Po2, Pco2, pH and O2 saturation in vivo. J Appl Physiol 1961;16:896–902PubMedGoogle Scholar
  52. 52.
    Neville JR. Electrochemical device for measuring oxygen. Rev Sci Instrum 1962;33:51–55CrossRefGoogle Scholar
  53. 53.
    Fatt I. Polarographic Oxygen Sensors. 1976; Cleveland, OH: CRC PressGoogle Scholar
  54. 54.
    Hobbs AP. Gas analysis. Anal Chem 1964;36:130R-148RCrossRefGoogle Scholar
  55. 55.
    Beneken-Kolmer HH, Kreuzer F. Continuous polarographic recording of oxygen pressure in respiratory air. Respir Physiol 1968;4:109–117CrossRefGoogle Scholar
  56. 56.
    Severinghaus JW. High temperature operation of oxygen electrode giving fast response for respiratory gas sampling. Clin Chem 1963;9:727–733Google Scholar
  57. 57.
    Van Slyke DD, Neill JM. The determination of gases in blood and other solutions by vacuum extraction and manometric measurement. J Biol Chem 1924;61:523–573Google Scholar
  58. 58.
    Natelson S. Routine use of ultramicro methods in the clinical laboratory. Am J Clin Pathol 1951;21:1153–1172PubMedGoogle Scholar
  59. 59.
    Haldane JS. The ferricyanide method of determining the oxygen capacity of blood. J Physiol 1900;25:295–301PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Holaday DA, Verosky M. Improved micromanometric methods for the analysis of respiratory gases in plasma and whole blood. J Lab Clin Med 1956;47:634–644PubMedGoogle Scholar
  61. 61.
    Neville JR Jr. A simple, rapid polarographic method for blood oxygen content determination. J Appl Physiol 1960;15:717–722PubMedGoogle Scholar
  62. 62.
    Damaschke K, Saling E. Neue klinische Methode zur Messung des im Blut gelösten und gebundenen Sauerstoffes auf elektrochemischem Wege. Klin Wochenschr 1959;37:826–828PubMedCrossRefGoogle Scholar
  63. 63.
    Clark LC Jr. Continuous recording of blood oxygen content. Surg Forum 1960;9:143–144Google Scholar
  64. 64.
    Awad O, Winzler RJ. Electrochemical determination of the oxygen content of blood. J Lab Clin Med 1961;58:489–494PubMedGoogle Scholar
  65. 65.
    Laver MB, Murphy AJ, Seifen A, et al. Blood oxygen content measurements using the oxygen electrode. J Appl Physiol 1965;20:1063–1069PubMedGoogle Scholar
  66. 66.
    Laver MB, Seifen A. Measurement of blood oxygen tension in anesthesia. Anesthesiology 1965;26:73–101PubMedCrossRefGoogle Scholar
  67. 67.
    Wilson RS, Laver MB. Oxygen analysis. Anesthesiology 1972;37:112–126PubMedCrossRefGoogle Scholar
  68. 68.
    Linden RJ, Ledsome JR, Norman J. Simple methods for the determination of the concentrations of carbon dioxide and oxygen in blood. Br J Anaesth 1965;37:77–88PubMedCrossRefGoogle Scholar
  69. 69.
    Mayers LB, Foster RE. A rapid method for measuring blood oxygen content utilizing the oxygen electrode. J Appl Physiol 1966;21:1393–1396PubMedGoogle Scholar
  70. 70.
    Theye RA. Blood O2 content measurement using the O2 electrode. Anesthesiology 1967;28:773–775PubMedCrossRefGoogle Scholar
  71. 71.
    Tucker VA. Method for oxygen content and dissociation curves on microliter blood samples. J Appl Physiol 1967;23:410–414PubMedGoogle Scholar
  72. 72.
    Sabatier HS, Skinner DB, Balcavage WX. Measurement of blood oxygen content by a simplified polarographic technique. Johns Hopkins Med J 1970;126:249–257PubMedGoogle Scholar
  73. 73.
    Tazawa H. Measurement of O2 content in microliter blood samples. J Appl Physiol 1970;29:414–416PubMedGoogle Scholar
  74. 74.
    Solymar M, Rucklidge MA, Prys-Roberts C. A modified approach to the polarographic measurement of blood O2 content. J Appl Physiol 1971;30:272–275PubMedGoogle Scholar
  75. 75.
    Foex P, Prys-Roberts C, Hahn CEW, et al. Comparison of oxygen content of blood measured directly with values derived from measurement of oxygen tension. Br J Anaesth 1970;42:803–804PubMedGoogle Scholar
  76. 76.
    Klingenmaier CH, Behar MG, Smith TC. Blood oxygen content by oxygen tension after release by carbon monoxide. J Appl Physiol 1969;26:653–655PubMedGoogle Scholar
  77. 77.
    Behar MG, Severinghaus JW. Calibration and a correction of blood O2 content measured by Po2 after CO saturation. J Appl Physiol 1970;29:413PubMedGoogle Scholar
  78. 78.
    Linderholm H. A micromethod for the determination of carbon monoxide in blood. Acta Physiol Scand 1965;64:372–376PubMedCrossRefGoogle Scholar
  79. 79.
    Hersch P. Galvanic determination of traces of oxygen in gases. Nature 1952;169:792–793CrossRefGoogle Scholar
  80. 80.
    Hersch P. Trace monitoring in gases using galvanic systems. Anal Chem 1960;32:1030–1034CrossRefGoogle Scholar
  81. 81.
    Bates DV, Harkness EV. Notes on the application of the Hersch galvanic oxygen cell to measurement of blood oxygen content and tension. Can J Biochem Physiol 1961;39:991–999PubMedCrossRefGoogle Scholar
  82. 82.
    Clerbaux T, Gerets G, Frans A. Oxygen content determination using a new analyzer: the Lex-O2-Con. J Lab Clin Med 1973;82:342–348PubMedGoogle Scholar
  83. 83.
    Wilson RH, Jay B, Doty V, et al. Analysis of blood gases with gas absorption chromatographic technique. J Appl Physiol 1961;16:374–377PubMedGoogle Scholar
  84. 84.
    Lukas DS, Ayres SM. Determination of blood oxygen content by gas chromatography. J Appl Physiol 1961;16:371–374PubMedGoogle Scholar
  85. 85.
    Muysers K, Siehoff F, Worth G. Blut- und Atem-gasanalysen mit Hilfe der Gaschromatographie. Klin Wochenschr 1961;39:83–87PubMedCrossRefGoogle Scholar
  86. 86.
    Hamilton LH. Gas chromatography for respiratory and blood gas analysis. Ann NY Acad Sci 1962;102:15–28PubMedCrossRefGoogle Scholar
  87. 87.
    Lenfant C, Aucutt C. Measurement of blood gases by gas chromatography. Respir Physiol 1966;1:398–407PubMedCrossRefGoogle Scholar
  88. 88.
    Davies DD. A method of gas chromatography for quantitative analysis of blood-gases. Br J Anaesth 1970;41:192, 42:19–31Google Scholar
  89. 89.
    Farhi LE, Edwards AWT, Homma T. Determination of dissolved N2 in blood by gas chromatography and (a-A) N2 difference. J Appl Physiol 1963;18:97–106PubMedGoogle Scholar
  90. 90.
    Albers C, Farhi LE. Rasche und zuverlassige Bestimmung des Sauerstoffgehaltes im Blut mittels Gaschromatographie. Z Gesamte Exp Med 1965;139:485–505PubMedCrossRefGoogle Scholar
  91. 91.
    Lübbers DW, Baumgärtl H, Fabel H, et al. Principle of construction and application of various platinum electrodes. Prog Respir Res 1969;3:136–146CrossRefGoogle Scholar
  92. 92.
    Whalen WJ, Riley J, Nair P. A microelectrode for measuring intracellular Po2. J Appl Physiol 1967;23:798–801PubMedGoogle Scholar
  93. 93.
    Whalen WJ, Spande JI. A hypodermic needle Po2 electrode. J Appl Physiol 1980; 48:186–187PubMedGoogle Scholar
  94. 94.
    Hagihara B, Ishibashi F, Sasake K, Kamigawara Y. Cellulose acetate coatings for the polarographic oxygen electrode. Anal Biochem 1978;86:417–431PubMedCrossRefGoogle Scholar
  95. 95.
    Greenbaum R, Nunn JF, Prys-Roberts C, Kelman GR. Metabolic changes in whole human blood (in vitro) at 37°C. Respir Physiol 1967;2:274–282PubMedCrossRefGoogle Scholar
  96. 96.
    Kelman GR, Nunn JF. Nomograms for correction of blood Po2, Pco2, pH and base excess for time and temperature. J Appl Physiol 1966;21:1484–1490PubMedGoogle Scholar
  97. 97.
    Bradley AF, Stupfel M, Severinghaus JW. Effect of temperature on Pco2 and Po2 of blood in vitro. J Appl Physiol 1956;9:201–204PubMedGoogle Scholar
  98. 98.
    Berkenbosch A, Riedstra JW. Temperature effects in amperometric oxygen determinations with the Clark electrode. Acta Physiol Pharmacol Neerl 1963;12:144–156PubMedGoogle Scholar
  99. 99.
    Torres GE. Validation of oxygen electrode for blood. J Appl Physiol 1963;18:1008–1011PubMedGoogle Scholar
  100. 100.
    Payne JP, Hill DW, eds. Oxygen measurements in blood and tissues and their significance. Boston: Little, Brown, 1966:1–274Google Scholar
  101. 101.
    Severinghaus JW. Blood gas concentrations. In: Handbook of physiology. Section 3, vol 2. Respiration. Washington, DC: American Physiological Society, 1964:1475–1487Google Scholar
  102. 102.
    Severinghaus JW. Electrodes for blood and gas Pco2, Po2 and blood pH. Acta Anaesthesiol Scand 1962;11:207–220CrossRefGoogle Scholar
  103. 103.
    Severinghaus JW. Measurement of blood gases: Po2 and Pco2. Ann NY Acad Sci 1968;148:115–132PubMedCrossRefGoogle Scholar
  104. 104.
    Heitman H, Buckles RG, Laver MB. Blood Po2 measurements: performance of microelectrodes. Respir Physiol 1967;3:380–395CrossRefGoogle Scholar
  105. 105.
    Hulands GH, Nunn JF, Paterson GM. Calibration of polarographic electrodes with glycerol water mixtures. Br J Anaesth 1970;42:9–14PubMedCrossRefGoogle Scholar
  106. 106.
    Moran F, Kettel IJ, Cugell DW. Measurement of blood Po2 with the microcathode electrode. J Appl Physiol 1966;21:725–728PubMedGoogle Scholar
  107. 107.
    Rhodes PG, Moser KM. Sources of error in oxygen tension measurement. J Appl Physiol 1966;21:729–734PubMedGoogle Scholar
  108. 108.
    Severinghaus J, Weiskopf RB, Nishimura M. Oxygen electrode errors due to polarographic reduction of halothane. J Appl Physiol 1971;31:640–642PubMedGoogle Scholar

Copyright information

© Little, Brown and Company, Inc. 1986

Authors and Affiliations

  • John W. Severinghaus
    • 1
  • Poul B. Astrup
    • 2
  1. 1.Department of AnesthesiaUniversity of California Medical SchoolSan Francisco
  2. 2.Department of Clinical Chemistry, RigshospitalUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations