Ecology and experimental biology

  • Harold Barnes
Experimental Ecology — Its Significance As A Marine Biological Tool


1. The definition of the word “ecology” is considered and the difficulties — both practical and theoretical — associated with a precise formulation outlined.

2. Ecology as the study of systems consisting of components, or variables, each made up of a number of vectors is discussed.

3. A comparison of the difficulties inherent in the definition with those — less apparent — in abiotic systems is made.

4. The meaning of the word “experimental” is considered and its relation to a series of transformations on a biological system discussed.

5. The meaning — in the restricted sense determined by the definitions given — of experimental ecology and the practical problems it poses are dealt with in some detail.

6. The meaning of “experimental biology” and its relation to experimental ecology, as defined above, is discussed in relation to plant and animal systems.

7. The future of ecology — experimental and otherwise is discussed.

8. The increase in information will call for a greater integrative approach and the possible ways by which this can be achieved are outlined, particularly as they relate to the marine biological sciences.


Waste Water Water Management Water Pollution Biological System Integrative Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Ökologie und experimentelle Biologie


Der Begriff „Ökologie“ wird erörtert und die praktischen sowie theoretischen Schwierigkeiten aufgezeigt, welche einer präzisen Definition im Wege stehen. Ökologie wird als ein Forschungsgebiet aufgefaßt, das sich mit dem Studium von Systemen beschäftigt, welche aus Komponenten oder Variablen bestehen, von denen jede wieder eine Anzahl von Vektoren enthält und Vergleiche mit abiotischen Systemen anstellt. Die Bedeutung des Wortes „experimentell“ wird erörtert und dessen Beziehung zu einer Serie von Transformationen an einem biologischen System diskutiert. Eingehende Überlegungen werden dem auf Grund der gegebenen Definitionen eingeschränkten Begriffsinhalt „experimentelle Ökologie“ und den praktischen Problemen gewidmet, welche dieses Forschungsgebiet uns aufgibt. Die Konotation des Terminus „experimentelle Biologie“ wird behandelt und die Beziehung zwischen experimenteller Biologie und experimenteller Ökologie im Hinblick auf Pflanzen- und Tiersysteme diskutiert. Die Zukunft der Ökologie — experimentell und nichtexperimentell — bedarf besonderer Aufmerksamkeit. Das ständige Anwachsen der pro Zeiteinheit produzierten neuen Informationen macht eine stärkere Integration erforderlich; Vorschläge, wie dies erreicht werden könnte, werden vorgelegt, und zwar unter besonderer Berücksichtigung meeresbiologischer Aspekte.

Literature cited

  1. Allee, W. C., Emerson, A. E., Park, O., Park, T. &Schmidt, K. P., 1949. Principles of animal ecology. Saunders, Philadelphia Pa., 837 pp.Google Scholar
  2. Ashby, W. R., 1956. An introduction to cybernetics. Chapman & Hall, London, 295 pp.Google Scholar
  3. Barnes, H. &Barnes M., 1966. Ecological and zoogeographical observations on some of the common intertidal cirripedes of the coasts of the western European mainland in June–September 1963.In: Some contemporary studies in marine science. Ed. by H. Barnes. George Allen & Unwin, London, 83–105.Google Scholar
  4. —— &Healy, M. J. R., 1965. Biometrical studies on some common cirripedes. 1.Balanus balanoides: measurements of the scuta and terga of animals from a wide geographical range.J. mar. biol. Ass. U. K. 45, 779–789.Google Scholar
  5. —— &Marshall, S. M., 1951. On the variability of replicate plankton samples and some applications of contagious series to the distribution of catches over restricted periods.J. mar. biol. Ass. U. K. 30, 233–263.Google Scholar
  6. Bayne, B. L., 1964. Primary and secondary substrate settlement inMytilus edulis (L.) Mollusca.J. Anim. Ecol. 33, 513–523.Google Scholar
  7. Bodenheimer, F. S., 1938. Problems of animal ecology. Oxford Univ. Press, Oxford, 183 pp.Google Scholar
  8. Cassie, R. N., 1963. Microdistribution of plankton.Oceanogr. mar. Biol. Ann. Rev. 1, 223–252.Google Scholar
  9. Clements, F. E., 1916. Plant succession, an analysis of the development of vegetation. Carnegie Inst. Washington, 512 pp.Google Scholar
  10. Colebrook, J. M., 1964. Continuous plankton records: a principal component analysis of the geographical distribution of plankton.Bull. mar. Ecol. 6, 78–100.Google Scholar
  11. —— &Robinson, G. A., 1964. Continuous plankton records: annual variation of abundance of plankton 1948–1960.Bull. mar. Ecol. 6, 52–69.Google Scholar
  12. Comita, G. W. &Comita, J. J., 1957. The internal distribution patterns of a calanoid copepod population, and a description of a modified Clarke-Bumpus plankton sampler.Limnol. Oceanogr. 2, 321–332.Google Scholar
  13. Connell, J. H., 1961. Effects of competition, predation byThais lapilus, and other factors on natural populations of the barnacleBalanus balanoides.Ecol. Monogr. 31, 61–104.Google Scholar
  14. Cragg, J. B., 1961. Some aspects of the ecology of moorland animals.J. Ecol. 49, 477–506.Google Scholar
  15. Crisp, D. J., 1964. Racial differences between North American and European forms ofBalanus balanoides.J. mar. biol. Ass. U. K. 44, 33–45.Google Scholar
  16. Curtis, J. T., 1959. The vegetation of Wisconsin, Madison, an ordination of plant communities. Univ. of Wisconsin Press, Madison, 657 pp.Google Scholar
  17. —— &McIntosh, R. P., 1951. An upland forest continuum in the prairie-forest border region of Wisconsin.Ecology 32, 476–496.Google Scholar
  18. Fourth Marine Biological Symposium, 1964.Helgoländer wiss. Meeresunters. 10, 1–476.Google Scholar
  19. Friedrichs, K., 1958. A definition of ecology and some thoughts about basic concepts.Ecology 39, 154–159.Google Scholar
  20. Gleason, H. A., 1926. The individualistic concept of the plant association.Bull. Torrey bot. Club 53, 7–26.Google Scholar
  21. Hinchelwood, C., 1965. Science and the scientist.Advmt Sci. 22, 347–356.Google Scholar
  22. Hoese, H. D., 1960. Biotic changes in a bay associated with the end of a drought.Limnol. Oceanogr. 5, 326–336.Google Scholar
  23. Knight-Jones, E. W., 1951. Gregariousness and some aspects of the settling behaviour ofSpirorbis.J. mar biol. Ass. U. K. 30, 201–222.Google Scholar
  24. —— 1953. Laboratory experiments on gregariousness during settling inBalanus balanoides and other barnacles.J. exp. Biol. 30, 584–598.Google Scholar
  25. —— &Moyse, J., 1961. Intraspecific competition in sedentary marine animals.Symp. Soc. exp. Biol. 15, 72–95.Google Scholar
  26. —— &Stevenson, J. P., 1950. Gregariousness during settlement in the barnacleElminius modestus Darwin.J. mar. biol. Ass. U. K. 29, 281–297.Google Scholar
  27. Lissmann, H. W., 1958. On the function and evolution of electric organs in fish.J. exp. Biol. 35, 156- 191.Google Scholar
  28. Lloyd, M. &Ghelardi, R. J., 1964. A table for calculating the ‘equatability’ component of species diversity.J. Anim. Ecol. 33, 217–225.Google Scholar
  29. MacArthur, R. H., 1957. On the relative abundance of bird species.Proc. natn. Acad. Sci. U.S.A. 43, 293–295.Google Scholar
  30. MacFadyen, A., 1957. Animal ecology: aims and methods. Pitman, London, 264 pp.Google Scholar
  31. Margalff, R., 1961. Communication of structure in planktonic populations.Limnol. Oceanogr. 6, 124–128.Google Scholar
  32. Meadows, P. S., 1964. Substrate selection byCorophium species. The particle size of substrates.J. Anim. Ecol. 33, 387–394.Google Scholar
  33. Models and analogues in biology, 1960.Symp. Soc. exp. Biol. 14, 1–255.Google Scholar
  34. Parker, B. D. &Turner, B. L., 1961. “Operational” niches and “community interaction values” as determined fromin vitro studies of some soil algae.Evolution, N. Y. 15, 228–238.Google Scholar
  35. Patten, B. C., 1961. Negentropy flow in communities of plankton.Limnol. Oceanogr. 6, 26–30.Google Scholar
  36. Poore, M. E. D., 1964. Integration in the plant community.J. Ecol. 52 (Suppl.), 213–226.Google Scholar
  37. Quastler, H., 1959. Information theory of biological integration.Am. Nat. 93, 245–254.Google Scholar
  38. Ross, H. A., 1957. Principles of natural coexistence indicated by leafhopper populations.Evolution, N. Y. 11, 113–129.Google Scholar
  39. —— 1958. Further comments on niches and natural coexistence.Evolution, N. Y. 12, 112–113.Google Scholar
  40. Royce, W. V. &Robertson, F. W., 1964. The nutritional requirements and growth relations of different species ofDrosophila.J. exp. Zool. 156, 105–136.Google Scholar
  41. Ryland, J. S., 1959. Experiments on the selection of algal substrates by polyzoan larvae.J. exp. Biol. 36, 613–631.Google Scholar
  42. —— 1962. The association between polyzoa and algal substrata.J. Anim. Ecol. 31, 331–338.Google Scholar
  43. Sanders, H. L., 1960. Benthic studies in Buzzards Bay. 3. The structure of the soft-bottom community.Limnol. Oceanogr. 5, 138–153.Google Scholar
  44. Smith, J. E. &Newell, G. E., 1955. The dynamics of the zonation of the common periwinkle,Littorina littorea (L.) on a stoney beach.J. Anim. Ecol. 24, 35–56.Google Scholar
  45. Solomon, M. E., 1949. The natural control of animal populations.J. Anim. Ecol. 18, 1–35.Google Scholar
  46. Southward, A. J., 1956. The population balance between limpets and seaweeds on wavebeaten rocky shores.Rep. mar. biol. Stn Port Erin 68 (1955), 20–29.Google Scholar
  47. Udvardy, M. D. F., 1951. The significance of interspecific competition in bird life.Oikos 3, 98–123.Google Scholar
  48. Watt, A. S., 1964. The community and the individual.J. Ecol. 52 (Suppl.), 203–211.Google Scholar
  49. Williamson, M. H., 1961. An ecological survey of a Scottish herring fishery. Pt 4. Changes in the plankton during the period 1949 to 1959. Appendix: A method for studying the relation of plankton variations to hydrography.Bull. mar. Ecol. 5, 207–229.Google Scholar
  50. —— 1963. The relation of plankton to some parameters of the herring population of the northwestern North Sea.Rapp. P.-V. Réun. Cons. perm. int. Explor. Mer 154, 179–185.Google Scholar
  51. Wieser, W., 1960. Benthic studies in Buzzards Bay. II. The meiofauna.Limnol. Oceanogr. 5, 121–137.Google Scholar
  52. Wilson, D. P., 1952. The influence of the nature of the substratum on the metamorphosis of the larva of marine animals, especially the larvae ofOphelia bicornis Savigny.Annls Inst. Oceanogr., Monaco 27, 49–156.Google Scholar

Copyright information

© Biologischen Anstalt Helgoland 1967

Authors and Affiliations

  • Harold Barnes
    • 1
  1. 1.The Marine StationMillportScotland

Personalised recommendations