Communications in Mathematical Physics

, Volume 42, Issue 2, pp 127–162 | Cite as

Renormalization of the abelian Higgs-Kibble model

  • C. Becchi
  • A. Rouet
  • R. Stora


This article is devoted to the perturbative renormalization of the abelian Higgs-Kibble model, within the class of renormalizable gauges which are odd under charge conjugation. The Bogoliubov Parasiuk Hepp-Zimmermann renormalization scheme is used throughout, including the renormalized action principle proved by Lowenstein and Lam. The whole study is based on the fulfillment to all orders of perturbation theory of the Slavnov identities which express the invariance of the Lagrangian under a supergauge type family of non-linear transformations involving the Faddeev-Popov ghosts. Direct combinatorial proofs are given of the gauge independence and unitarity of the physicalS operator. Their simplicity relies both on a systematic use of the Slavnov identities as well as suitable normalization conditions which allow to perform all mass renormalizations, including those pertaining to the ghosts, so that the theory can be given a setting within a fixed Fock space. Some simple gauge independent local operators are constructed.


physicalS Operator Ghost Quantum Computing Local Operator Action Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    t'Hooft, G.: Nucl. Phys. B33, 173 (1971); B35, 167 (1971)Google Scholar
  2. 1a.
    t'Hooft, G., Veltman, M.: Nucl. Phys. B50, 318 (1972)Google Scholar
  3. 1b.
    Lee, B. W., Zinn-Justin, J.: Phys. Rev. D5, 312 (1972); D5, 3137 (1972); D5, 3155 (1972); D7, 1049 (1973)Google Scholar
  4. 1c.
    Abers, E. S., Lee, B. W.: Phys. Reports9C, n 1 (1973)Google Scholar
  5. 1d.
    Lee, B. W.: Phys. Rev. D9, 933 (1974)Google Scholar
  6. 2.
    t'Hooft, G., Veltman, M.: Nucl. Phys. B44, 189 (1972)Google Scholar
  7. 2a.
    Speer, E. G.: Rutgers University Preprint (1973)Google Scholar
  8. 3.
    Slavnov, A. A.: Kiev preprint ITP, 71–83 E (1971); TMO,10, 153 (1972)Google Scholar
  9. 4.
    Higgs, P.: Phys. Letters12, 132 (1964); Phys. Rev.145, 1156 (1966)Google Scholar
  10. 4a.
    Kibble, T. W. B.: Phys. Rev.155, 1554 (1967)Google Scholar
  11. 5.
    Zimmermann, W.: Ann. Phys.77, 536 (1973);77, 570 (1973)Google Scholar
  12. 6.
    Lowenstein, J. H.: Commun. math. Phys.24, 1 (1971)Google Scholar
  13. 7.
    Lam, Y-M. P.: Phys. Rev. D6, 2145 (1972); D7, 2943 (1973)Google Scholar
  14. 8.
    Lowenstein, J. H., Schroer, B.: Phys. Rev. D6, 1553 (1972); D7, 1929 (1973)Google Scholar
  15. 9.
    Becchi, C.: Commun. math. Phys.33, 97 (1973). Marseille Preprint 74/P. 598 (February 1974). To be published in Commun. math. Phys.Google Scholar
  16. 10.
    Lowenstein, J. H., Schroer, B., Weinstein, M., Zimmermann, W.: SLAC and NYU Preprints (1973–1974)Google Scholar
  17. 10a.
    Piguet, O.: CERN TH 1798 (January 1974)Google Scholar
  18. 11.
    Bourbaki, N.: Elements de Mathématiques XI, Algèbre CH 4 ∮ 5 n° 9. We thank R. Seiler for this referenceGoogle Scholar
  19. 12.
    Becchi, C., Rouet, A., Stora, R.: Lectures given at the International School on Elementary Particle Physics. Basko-Polje (September 1974)Google Scholar
  20. 13.
    Faddeev, L. D., Popov, V. N.: Phys. Letters25B, 29 (1967)Google Scholar
  21. 14.
    Wess, J., Zumino, B.: CERN TH 1753 (September 1973)Google Scholar
  22. 15.
    Jona-Lasinio, G.: Nuovo Cimento34, 1790 (1964)Google Scholar
  23. 15a.
    Symanzik, K.: Cargèse Lectures 1970, New York: Gordon and Breach (1972)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • C. Becchi
    • 1
  • A. Rouet
    • 1
  • R. Stora
    • 1
  1. 1.Centre de Physique ThéoriqueC.N.R.S.MarseilleFrance

Personalised recommendations