Advertisement

Communications in Mathematical Physics

, Volume 59, Issue 1, pp 1–15 | Cite as

Stable vector bundles and instantons

  • Robin Hartshorne
Article

Abstract

Methods of abstract algebraic geometry are used to study rank 2 stable vector bundles on ℙ3. These bundles are then used to give self-dual solutions, called instantons, of the Yang-Mills equation onS4.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Vector Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M. F., Hitchin, N. J., Singer, I. M.: Deformations of instantons. Proc. Nat. Acad. Sci. USA74, 2662–2663 (1977)Google Scholar
  2. 2.
    Atiyah, M. F., Ward, R. S.: Instantons and algebraic geometry. Commun. math. Phys.55, 117–124 (1977)Google Scholar
  3. 3.
    Barth, W.: Some properties of stable rank-2 vector bundles on ℙn. Math. Ann.226, 125–150 (1977)Google Scholar
  4. 4.
    Grauert, H., Mülich, G.: Vektorbündel vom Rang 2 über demn-dimensionalen komplexprojektiven Raum. manuscripta math.16, 75–100 (1975)Google Scholar
  5. 5.
    Hartshorne, R.: Algebraic geometry. In: Graduate texts in mathematics, Vol. 52. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  6. 6.
    Hartshorne, R.: Moduli of stable vector bundles on ℙ3. In preparationGoogle Scholar
  7. 7.
    Jackiw, R., Nohl, C., Rebbi, C.: Conformal properties of pseudoparticle configurations. Phys. Rev. D15, 1642–1646 (1977)Google Scholar
  8. 8.
    Maruyama, M.: Moduli of stable sheaves. I. J. Math. Kyoto Univ.17, 91–126 (1977)Google Scholar
  9. 9.
    Serre, J.-P., Géométrie et géométrie analytique. Ann. Inst. Fourier6, 1–42 (1956)Google Scholar
  10. 10.
    Wever, G.: Ph. D. Thesis, Berkeley (1977)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Robin Hartshorne
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations