Finding connected components of a semialgebraic set in subexponential time

  • J. Canny
  • D. Yu. Grigor'ev
  • N. N. VorobjovJr.
Article

Abstract

Let a semialgebraic set be given by a quantifier-free formula of the first-order theory of real closed fields with atomic subformulae of type (fi ≥ 0), 1 ≤i ≤k where the polynomialsfi ε ℤ[X1,..., Xn] have degrees deg(fi <d and the absolute value of each (integer) coefficient offi is at most 2 M . An algorithm is designed which finds the connected components of the semialgebraic set in time\(M^{O(1)} (kd)^{n^{O(1)} } \). The best previously known bound\(M^{O(1)} (kd)^{n^{O(n)} } \) for this problem follows from Collins' method of Cylindrical Algebraic Decomposition.

Key words

Semialgebraic set Connected component Subexponential-time algorithm Infinitesimals Tarski algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grigor'ev, D.Yu., Vorobjov, N.N., jr.: Solving systems of polynomial inequalities in subexponential time. J. Symb. Comput.5, 37–64 (1988)Google Scholar
  2. 2.
    Grigor'ev, D.Yu.: Complexity of deciding Tarski algebra. J. Symb. Comput.5, 65–108 (1988)Google Scholar
  3. 3.
    Tarski, A.: A desision method for elementary algebra and geometry. University of California Press 1951Google Scholar
  4. 4.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Lecture Notes Comp. Sci. Vol. 33, pp. 134–183. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  5. 5.
    Wüthrich, H.R.: Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossenen Körper. Lecture Notes Comp. Sci. Vol. 43, pp. 138–162. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  6. 6.
    Chistov, A.L., Grigor'ev, D.Yu.: Subexponential-time solving systems of algebraic equations. I. II. Preprints LOMI E-9-83 and E-10-83, Leningrad 1983Google Scholar
  7. 7.
    Grigor'ev, D.Yu.: Computational complexity in polynomial algebra. Proceedings of the 29th Int. Congress of Mathematicians. Berkeley, pp. 1452–1460 (1986)Google Scholar
  8. 8.
    Lang, S.: Algebra. New York: Addison-Wesley 1965Google Scholar
  9. 9.
    Fitchos, N., Galligo, A., Morgenstern, J.: Algorithmes rapides en séquential et en parallele pour l'élimination de quantificateurs en géométrie élémentaire. VER de Mathématiques Université de Paris VII (1988)Google Scholar
  10. 10.
    Vorobjov, N.N., jr.: Deciding consistency of systems of polynomial in exponent inequalities in subexponejitial time. Notes of Sci. Seminars of Leningrad Department of Math. Steklov Inst.176, 3–52 (in Russian) (1989)Google Scholar
  11. 11.
    Shafarevich, I.R.: Basic algebraic geometry. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  12. 12.
    Heintz, J.: Definability and fast quantifier elimination in algebraically closed field. Theor. Comp. Sci.24, 239–278 (1983)Google Scholar
  13. 13.
    Vorobjov, N.N., jr., Grigor'ev, D.Yu.: Counting connected components of a semialgebraic set in subexponential time. Sov. Math. Dokl.42(2), 563–566 (1991)Google Scholar
  14. 14.
    Dold, A.: Lectures on algebraic topology. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  15. 15.
    Grigor'ev, D.Yu., Vorobjov, N.N., jr.: Counting connected components of a semialgebraic set in subexponential time. Submitted to Computational Complexity 1989Google Scholar
  16. 16.
    Heintz, J., Roy, M.-F., Solerno, P.: Sur la complexité du principe de Tarski-Seidenberg. Bull. Soc. Math. France.118, 101–126 (1990)Google Scholar
  17. 17.
    Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. Parts I-II. Technical report, Cornell University 1989Google Scholar
  18. 18.
    Canny, J.F.: The complexity of robot motion planning. Cambridge: MIT Press 1988Google Scholar
  19. 19.
    Grigor'ev, D.Yu., Heintz, J., Roy, M.-F., Solerno, P., Vorobjov, N.N., jr.: Comptage des composantes connexes d'un ensemble semi-algebrique en temps simplement exponential. CompteRendus Acad. Sci. Paris311, Serié I, 879–822 (1990)Google Scholar
  20. 20.
    Heintz, J., Roy, M.-F., Solerno, P.: Construction de chamins dans un ensemble semi-algebrique. Preprint Univ. Buenos Aires, Argentina 1990Google Scholar
  21. 21.
    Heintz, J., Roy, M.-F., Solerno, P.: Single exponential path finding in semialgebraic sets. Proc. AAECC Conf. Tokyo 1990Google Scholar
  22. 22.
    Heintz, J., Roy, M.-F., Solerno, P.: Description des composantes connexes d'un ensemble semi-algebrique en temps simplement exponentiel. Compte-Rendus Acad. Sci. Paris313, Serié I, 167–170 (1991)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • J. Canny
    • 1
  • D. Yu. Grigor'ev
    • 2
  • N. N. VorobjovJr.
    • 2
  1. 1.Computer Science DivisionUniversity of BerkeleyCaliforniaUSA
  2. 2.V.A. Steklov Institute of Academy of SciencesSt. PetersburgRussia

Personalised recommendations