Studia Geophysica et Geodaetica

, Volume 35, Issue 3, pp 151–165

Spherical harmonic expansion of the Earth's crustal thickness up to degree and order 30

  • O. Čadek
  • Z. Martinec
Article

Summary

The knowledge of the depth of the Mohorovičic' discontinuity (Moho) is important for investigating the 3-D structure of the Earth's interior, since the variations in the crustal thickness can significantly affect geophysical observations made at the Earth's surface. In this paper, the information about the topography of the crust-mantle boundary is compiled from various sources and the crustal thickness is represented in a spherical harmonic expansion up to degree and order 30.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Mohorovičić: Das Beben vom 8. V. 1909. Jahrbuch des Meteorologischen Observatorium 9, Teil 4, Zagreb 1910.Google Scholar
  2. [2]
    A. M. Dziewonski, D. L. Anderson: Preliminary reference Earth model. Phys. Earth Planet Inter., 25 (1981), 297.Google Scholar
  3. [3]
    J. H. Woodhouse, A. M. Dziewonski: Mapping the upper mantle: Three-dimensional modeling of earth structure by inversion of seismic waveforms. J. Geophys. Res., 89 (1984), 5953.Google Scholar
  4. [4]
    J. Goslin, P. Beuzart, J. Frauchetau, X. Le Pichon: Thickening of the oceanic layer in the Pacific Ocean. Marine Geophys. Res., 1 (1972), 418.Google Scholar
  5. [5]
    N. A. Belyaevsky: Structure of the Earth Crust from Geologic-geophysical Data (in Russian). Nedra, Moscow, 1981.Google Scholar
  6. [6]
    Tectonic map of Northern Eurasia. Relief of the “Moho” surface compilated by N. A. Belyaevsky and I. S. Volkovsky. Moscow, 1980.Google Scholar
  7. [7]
    R. Meissner, Th. Wever, E. R. Flüh: The Moho in Europe — Implications for crustal development. Ann. Geophys. 5B (4, 1987), 357.Google Scholar
  8. [8]
    R. J. Allenby, C. C. Schnetzler: United States crustal thickness. Tectonophysics, 93 (1983), 13.Google Scholar
  9. [9]
    O. L. Colombo: Numerical methods for harmonic analysis on the sphere. Report No. 310, Ohio State Univ., Columbus, Ohio 1981.Google Scholar
  10. [10]
    A. Tarantola: Inverse Problem Theory. Method for Data Fitting and Model Parameter Estimation. Elsevier, Amsterdam, 1987.Google Scholar
  11. [11]
    Z. Martinec: Program to calculate the least-squares estimates of the spherical harmonic expansion coefficients of an equally angular-gridded scalar field. Computer Physics Communications, 64 (1991), 140.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1991

Authors and Affiliations

  • O. Čadek
    • 1
  • Z. Martinec
    • 1
  1. 1.Department of Geophysics, Faculty of Math. and Phys.Charles UniversityPrague

Personalised recommendations