Determination of coherence length from speckle contrast on a rough surface

  • René Dändliker
  • François M. Mottier
Original Papers

Conclusions

The speckle pattern in the image of a diffusely scattering plane surface illuminated by two mutually inclined quasi plane waves split from a common laser source gives a direct display of the coherence properties of that light source. This can be used as a simple device to check the coherence of a laser source for holographic or interferometric work. The speckle contrast is a linear function of the square modulus of the degree of coherence. This relation has been proved experimentally for coherent and for incoherent laser radiation. The main difference of the intensity distributions for coherent and incoherent illumination occurs at low intensities, which have maximum probability in the coherent and minimum probability in the incoherent case. The intensity probability distributions have been determined experimentally for two limiting cases. Within the experimental limitations they show very good agreement with the theoretical predictions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. D. Rigden andE. I. Gordon, Proc. IRE50, 2367 (1962).Google Scholar
  2. [2]
    B. M. Oliver, Proc. IEEE51, 220 (1963).Google Scholar
  3. [3]
    L. I. Goldfischer, J. Opt. Soc. Am.55, 247 (1965).Google Scholar
  4. [4]
    B. Eliasson andF. M. Mottier, J. Opt. Soc. Am.61, 559 (1971).Google Scholar
  5. [5]
    L. H. Enloe, Bell Syst. Tech. J.46, 1479, (1967).Google Scholar
  6. [6]
    S. Lowenthal andH. Arsenault, J. Opt. Soc. Am.60, 1478 (1970).Google Scholar
  7. [7]
    R. Dändliker andF. M. Mottier, to be published.Google Scholar
  8. [8]
    J. M. Burch,Optical Instruments and Techniques 1969, Ed.J. H. Dickson (Oriel Press Ltd., Newcastle 1970), pp. 213–229.Google Scholar
  9. [9]
    E. Archbold, A. E. Ennos andP. A. Taylor,Optical Instruments and Techniques 1969, Ed.J. H. Dickson (Oriel Press Ltd., Newcastle 1970), pp. 265–275.Google Scholar
  10. [10]
    R. Dändliker, A. A. Grütter andH. P. Weber, IEEE J. Quantum El.QE-6, 687 (1970).Google Scholar
  11. [11]
    J. W. Goodman,Introduction to Fourier Optics, (McGraw-Hill, New York 1968), pp. 102–105.Google Scholar
  12. [12]
    M. Born andE. Wolf,Principles of Optics, 3rd ed. (Pergamon Press Ltd., Oxford 1965), p. 500.Google Scholar
  13. [13]
    See e.g.L. Levi,Applied Optics, Vol. 1 (John Wiley and Sons Inc., New York 1968), p. 138.Google Scholar
  14. [14]
    J. W. Strutt (BaronRayleigh),Scientific Papers Vol. I (Cambridge University Press, Cambridge 1899), p. 491; Phil. Mag.10, 73, (1880).Google Scholar
  15. [15]
    See e.g.M. G. Kendall andA. Stuart,The Advanced Theory of Statistics, Vol. I (Charles Griffin & Co., Ltd., London 1958), p. 188.Google Scholar
  16. [16]
    R. Dändliker, B. Eliasson andF. M. Mottier, to be published.Google Scholar

Copyright information

© Birkhäuser-Verlag 1971

Authors and Affiliations

  • René Dändliker
    • 1
  • François M. Mottier
    • 1
  1. 1.Brown Boveri Research CenterBadenSwitzerland

Personalised recommendations