Studia Geophysica et Geodaetica

, Volume 35, Issue 4, pp 354–357 | Cite as

Local magnitude, surface wave magnitude and seismic energy

  • Vladimír Tobyáš
  • Reinhard Mittag
Short Contributions


The local magnitude ML at the seismological station Pruhonice (PRU) was converted into surface wave magnitude MS using the formula MS=−3.2+1.45 ML and the seismic wave energy was estimated using the relation log E (Joule)=1.2+2.0 ML. It was proposed to apply the same conversion formulae at seismological stations Kašperské Hory (KHC) and Berggiesshübel (BRG) where the calibrating functions for local magnitudes were determined for the same set of earthquakes with common reference magnitudes as in the case of the PRU station.


Surface Wave Structural Geology Seismic Wave Wave Energy Seismic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Procházková, V. Tobyáš, D. Knaislová: Magnitude relations for short epicentral distances at seismic station PRU and KHC. Travaux Inst. Géophys. Acad. Tchécosl. Sci. No 602, Travaux Géophysiques 1985, Academia, Praha 1988.Google Scholar
  2. [2]
    V. Tobyáš, R. Mittag: Relations for local magnitudes at seismic station Berggiesshübel. MS., Geophysical Inst. Czechosl. Acad. Sci., Prague 1990.Google Scholar
  3. [3]
    V. Tobyáš, D. Procházková, D. Knaislová, R. Mittag: Seismic activity in the region of opencast mines in the North Bohemian Brown-Coal District. Proceedings of the XX General Assembly of ESC in Kiel 1986, 196. Fed. Inst. of Technology, Zürich 1987.Google Scholar
  4. [4]
    J. Plomerová, L. Ruprechtová: Magnitudes and travel-time residuals of the Friuli earthquakes between May and August 1976. Studia geoph. et geod., 23 (1979), 74.Google Scholar
  5. [5]
    D. Seidl, H. Berckhemer: Determination of source moment and radiated seismic energy from broadband recordings. Phys. Earth. Planet. Int., 30 (1982), 209.Google Scholar
  6. [6]
    M. Båth, O. Kulhánek, T. Eck, R. Wahlström: Engineering analysis of ground motion in Sweden. Report No. 5–76, Seismological Institute, Uppsala 1976.Google Scholar
  7. [7]
    B. Gutenberg, C. F. Richter: Magnitude and energy of earthquakes. Annali di Geofizica, IX (1956), 1.Google Scholar
  8. [8]
    B. Gutenberg, C. F. Richter: Earthquake magnitude, intensity, energy and acceleration. Bull. Seism. Soc. Am., 46 (1956), 105.Google Scholar
  9. [9]
    M. Båth: Introduction to seismology. Birkhäuser Verlag, Basel and Stuttgart 1973.Google Scholar
  10. [10]
    M. Wyss, J. N. Brune: Seismic moment, stress and source dimension for earthquakes in California-Nevada region. J. Geophys. Res., 73 (1968), 4681.Google Scholar
  11. [11]
    K. Iida: A magnitude energy relation for large and small earthquakes and seismic efficiency factor. (In Japanese). Zisin, 24 (1971), 266.Google Scholar
  12. [12]
    W. Thatcher, T. C. Hanks: Source parameters of Southern California earthquakes. J. Geophys. Res., 78 (1973), 8547.Google Scholar
  13. [13]
    S. J. Gibowicz: Seismic moment and seismic energy of mining tremors in the Lubin copper basin in Poland. Acta Geophysica Polonica, XXXIII (1985), 243.Google Scholar
  14. [14]
    C. F. Richter: Elementary seismology. W.H. Freeman and Comp., San Francisco 1958.Google Scholar
  15. [15]
    F. Scherbaum, D. Stoll: Source parameters and scaling laws of the 1978 Swabian Jura (southwest Germany) aftershocks. Bull. Seism. Soc. Am., 73 (1983), 1321.Google Scholar
  16. [16]
    S. J. Duda: Regional seismicity and seismic wave propagation from record of Tonto Forest Seismological Observatory, Payson, Arizona. Annali di Geofizica, XVIII (1965), 365.Google Scholar
  17. [17]
    W. E. T. Smith, K. Whitham, W. T. Piché: A microearthquake swarm in 1965 near Mould Bay N. W. T. Canada. Bull. Seism. Soc. Am., 58 (1968), 1991.Google Scholar
  18. [18]
    R. E. White: A local magnitude scale for South Australian earthquakes. Bull. Seism. Soc. Am., 58 (1968), 1041.Google Scholar
  19. [19]
    V. Schenk: Calculation of seismic hazard. (In Czech). Doctor Scientiarum Thesis, Part 2. Geophysical Institute, Czechosl. Acad. Sci., Prague 1990.Google Scholar

Copyright information

© ACADEMIA, Publishing House of the Czechoslovak Academy of Sciences 1991

Authors and Affiliations

  • Vladimír Tobyáš
    • 1
  • Reinhard Mittag
    • 2
  1. 1.Geophysical InstituteCzechosl. Acad. Sci.Prague
  2. 2.Zentralinstitut für Physik der ErdePotsdam

Personalised recommendations